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Motivation, Objective, and Summary. Technological advancements in sev-
eral work sectors have influenced evolution of the landscape of work at an un-
precedented speed, leading to the demand of continuous skill development [1,8].
In turn, this interests a number of stakeholders spanning across academia and
industry in a number of disciplines including labor economics, who leverage
large-scale data available from a variety of offline and online sources (e.g.,
resumes, job portals, professional social networking such as LinkedIn, search
engine, job databases, etc.) [9,11,12]. On these data streams, describing job as-
pects and skills vary extensively, confounded by factors such as self-presentation,
subjective perspectives on soft and hard skills, audience, and intrinsic traits
such as personality and mindset [2,4,7,15,17]. Such data analyses require a
taxonomy of keywords that are associated with skills per job description or
type. However, most databases are only limited — they do not capture vari-
ants, typos, abbreviations, or internet slangs that are used on social media or
in informal settings [6]. To facilitate research in this space, our work builds
on a well-validated dictionary of occupational descriptors (O*Net) to propose
a method, and correspondingly a knowledgebase, JobLex of occupational de-
scriptors that can be used in computational social science and organizational
studies [13]. We publish both our script and an example lexicon (for Twitter)
for purposes of research and practical application.
JobLex. We obtain a database of occupational descriptors, Occupational In-
formation Network (O*Net). O*Net (onetonline.org) is developed under the
sponsorship of the U.S. Department of Labor/Employment and Training Ad-
ministration, and has extensively been used in research [3,5,16]. It enlists and
describes eight primary occupational categories expanded further into 248 leaf
occupational-categories. The hand-curated occupational descriptors allow us
to represent occupational descriptors in a theoretically-grounded fashion. To
capture the linguistic and semantic context of these descriptors, we use word
embeddings. In particular, we expand them into clusters of keywords on the
basis of pre-trained word embeddings (GloVe) [10] in the lexico-semantic la-
tent space of word-vector dimensions [14]. In our specific case, we choose 30
keywords per cluster (ranked on cosine similarity), and use the n-dimensional
(n=200) word-vectors trained on word-word co-occurrences in a Twitter corpus
of 6B tokens [10] (see Table 1 for example keywords in eight broad occupational
descriptors). We qualitatively inspect JobLex to observe that its keywords are
theoretically and intuitively associated with the categories that they belong to
– for example, understanding, feelings, person occur with high similarity with
Concern for Others, and responsibilities, challenges, willingness occur with high
similarity with Work Styles: Initiatives [3]. For research and practical purposes,
we publish the script and lexicon of JobLex at github.com/joblex/joblex.

Table 1: Job aspect types with their descriptions as obtained from O*Net.
Job Aspect Example Keywords

Interests people, think, working, learning, teaching, business, involved, reason, helping
Knowledge development, technology, teaching, training, education, information, improve
Skills people, learning, lesson, education, bridging, differences, behavior, intentions
Wk. Activities spending, teaching, conflicts, resolving, disputes, performance, relationships
Wk. Context people, competitive, require, group, offer, think, person, experience, schedule
Wk. Styles working, understand, right, difficult, responsibilities, positive, improving, effort
Wk. Values business, ability, allow, decisions, potential, development, leadership, honest
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