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Mental health issues, which can be difficult to diagnose, are a growing concern worldwide. For effective care and support,
early detection of mood-related health concerns is of paramount importance. Typically, survey based instruments including
Ecologically Momentary Assessments (EMA) and Day Reconstruction Method (DRM) are the method of choice for assessing
mood related health. While effective, these methods require some effort and thus both compliance rates as well as quality
of responses can be limited. As an alternative, We present a study that used passively sensed data from smartphones and
wearables and machine learning techniques to predict mood instabilities, an important aspect of mental health. We explored
the effectiveness of the proposed method on two large-scale datasets, finding that as little as three weeks of continuous,
passive recordings were sufficient to reliably predict mood instabilities.
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1 INTRODUCTION

Situated communities consist of geographically co-located, diverse, and close-knit communities of individuals,
who share distinctive social ties [57]. Understanding the well-being of such communities can foster the adoption
of preemptive steps to facilitate the psychological needs of individuals and the communities that they are part of.
Understanding psychosocial well-being can help design informed and tailored care and intervention strategies to
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proactively prevent the onset of mental health challenges among individuals and, as a result, communities at
large.

Mental health challenges account for almost one-half of the disease burden in the United States alone [25], and
the country spends over 200B USD per year to treat mental disorders [48]. Most lifetime mental disorders appear
by the age of 24 [27], and when developed in crucial periods of transition to adulthood impedes an individual’s
psychosocial functioning, vocational development, and access to social capital [25]. Furthermore, if left untreated,
mental health challenges can negatively impact academic success, productivity, and social relationships [28, 67].

Mood is a vital construct of an individual’s mental health. Long or short term changes in the psychological
state of an individual, such as anxiety or depression, are usually reflected by a corresponding mood change
[3, 8, 35, 42] For example, consistent negative affective state is ine of the a diagnostic criterion for depression [8],
and frequent mood swings are symptoms of bipolar disorder (BPD) [2, 3]. The lack of temporal stability in a
person’s mood is defined as mood instability and it can be of clinical significance [36]. For example, depression,
anxiety, life satisfaction are all associated with instability of both positive and negative moodes [20, 31]. Hence,
the measurement of mood instability can be a crucial component towards understanding and treating various
mental health outcomes.

One of the most common methods for measuring mood instability is to ask individuals to respond to self-report
questionnaires (e.g., Affective Lability Scale [21], Affect Intensity Scale [33], or General Emotional Dysregulation
Measure [39]). Though generally reliable, surveys have a number of biases that reduce their validity, including
memory recall bias, social-desirability bias, frame-of-reference bias, amongst others. An alternative to self-report
questionnaires is situated active measurement approaches through Ecological Momentary Assessments (EMA),
i.e., micro-questionnaires that actively probe an individual via electronic prompts [50, 66]. EMA questions are
designed to repeatedly capture real-world data in real-time in naturally occurring contexts [60]. However, it is not
without its limitations, most severe being the fact that it can be disruptive so cannot be used in perpetuity.

What is needed is a passive method to model mood states at scale. Smartphones provide a viable option with
approximately 96% and 92% of US young adults between the age of 18-29 and 30-49, respectively, owning a
smartphone[44] . This widespread adoption of ubiquitous computing technologies, specifically smartphones,
creates an opportunity for using passive sensing modalities to assess aspects of mental health (e.g., mood
instability). Smart devices also allow for combining passive sensing with active user querying through EMAs
[51, 68, 69].

In this article, we assess mood instability of individuals in situated communities (where the individuals
are geographically colocated [57] and share distinctive social ties, such as students on college campuses, and
employees at workplaces by using a combination of passive sensing modalities (e.g., smartphones, wearables)
and an automated classification approach. Specifically, our contributions are as follows:

(1) We developed a model to predict mood instability only using passively sensed data from both smartphone
sensors and wearable sensors of individuals in situated communities.

(2) Based on the evidence that mood instability might be a relatively stable trait [36], we present computational
methods to infer mood stability from three weeks of actively queried EMA responses or three weeks of
passively collected sensor data. We validate our findings with two different kinds of situated communities:
college students on campus and peers in workplaces.

(3) We discuss the implications of our results for situated communities, and also illustrate the privacy and
ethical implications of collecting and using passive sensing data at scale.

2 RELATED WORK

We first define mood instability and its use as an indicator of mental health. We then examine related work
that highlights the difficulty in accurately capturing mood instability. We discuss the use of short and frequent
self-report surveys, so-called Ecological Momentary Assessments (EMAs) for capturing other mental health
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conditions, and how it could be applied to mood instability. Finally, we review related work on using passive
sensing to address limitations of EMAs.

2.1 Mood Instability and Mental Health

Mood instability is often referred to by clinicians and psychologists as affective lability, emotional instability,
affective and emotional dysregulation, or mood swings [36]. Even though it has been widely described in the
psychology literature, there is a lack of agreement in its precise definition [34, 65, 71], though this is true of
other psychological constructs as well. Mood instability encompasses a variety of distinct features such as
“frequent affective category shifts, disturbances in affect intensity, overdramatic expressions, excessive reactivity
to psychological cues, delayed return to emotional baseline”, etc [29]. According to Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) [9], in the Borderline Personality Disorder population (BPD), mood
instability reflects “marked reactivity of mood” including intense irritability and intense anxiety, which might last
a few hours or rarely more than a few days. Mood instability is identified as a common feature of many mental
health conditions. For example, it is one of the widely agreed upon symptoms for BPD [9, 16]. In addition, studies
indicate that of all the BPD diagnostic criteria, mood instability is the strongest predictor of suicidal behavior
[72]. Mood instability is strongly associated with attention deficit hyperactivity disorder (ADHD), and it has
argued that mood instability should be considered as a diagnostic criteria for ADHD [62]. Mood instability is also
frequent in depression[7] and anxiety disorder [5].

Despite these well known mental health associations, measuring and characterizing mood instability has
proven to be challenging [19]. Traditional methods of measuring mood instability rely on respondents’ recall,
which is captured through surveys or interviews [65]. One of the most commonly used clinical survey instruments
for quantifying mood instability in BLPD and other psychiatric disorders [22, 30] is the Affective Lability Scale
(ALS)[21]. ALS asks respondents to rate a statement on how closely it characterizes them (e.g., “One minute
I can be feeling OK, and then the next minute I'm tense, jittery, and nervous.). First, there is no mention of
how much historical context the participants should consider while answering this question so it can vary from
participant to participant ; Second, individuals are most likely to recall experiences that are consistent with
the current mood state. Hence, they might suffer from recall bias, in which they are biased when recalling past
experiences, especially when they are asked to aggregate moods or experiences over a long period of time [24].
Previous research suggests that the responses to instruments, which attempt to capture retrospective mood, are
primarily influenced by the peak and end of an affectively intense period [18]. Hence, it is very unlikely that the
participants can report the variation in their own mood if they are asked to reflect on it after a long period of
time. In this paper, we address some of these challenges by investigating whether we can assess mood instability
using passively sensed data from smartphones and social media.

2.2 Sensing Mental Health with EMA

Ecological Momentary Assessment (EMA) have emerged as a popular technique [60]. EMA items are short
questions designed to capture in-situ real time information about a person’s experience. This approach is also
often referred to as an Experience Sampling Method (ESM) [58]. EMAs address some of the limitations of survey-
based approaches. One of the advantages of EMAs is that the timing can be varied in that EMAs can be gathered
at a certain time, after a certain event, or a combination of both [65]. In addition, EMAs can vary based on the
platform, including text messages, voice calls [59, 61], paper-pencil diaries, smart devices [50, 66] etc.. Hence,
EMA provides several advantages over traditional methods (e.g., surveys, interviews, etc.) when a dynamic
psychological process (e.g., mood) is of interest to researchers [45]. In fact, it has been used widely as a tool for in
situ measurement of affective phenomenon such as mood [60]. Furthermore, EMAs can also be configured to
record context during measurement. For example, characteristics of the environment (e.g., location, time, etc.)
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can be recorded while an EMA is being answered [65]. Finally, EMAs are easier to answer compared to surveys
simply due to their shorter length and are also less prone to recall bias [60].

2.3 Sensing Mental Health with Passive Sensors and EMAs

Researchers from various disciplines have used EMAs alongside passive sensors for assessing the mental health of
their target populations [53, 68, 69]. For example, Wang et al. [68, 69] gathered mental health data on mood, stress,
among other measures, of (Dartmouth) college students using EMAs. They also recorded data about students’
daily activities (e.g., walking, conversation) using passive sensors and found a correlation between the two data
sources [68]. Saha et al. inferred mood instability of a Georgia Tech student sample based on EMA and social
media data [53]. Several similar studies on various samples have been conducted [1, 14, 51], using EMAs to collect
ground truth data of mental health markers (e.g., stress, mood, depression, etc).

Even though EMAs have several advantages for collecting data “in-the-wild”, there are several drawbacks for
EMA-based studies [58]. Since these studies usually prompt their participants frequently, they pose a challenge
of response burden for the participants [63]. This creates a trade-off between increasing the granularity of data
collection and reducing data burden on the participants. In addition, recruiting participants over long periods
of time incurs substantial logistical and financial constraints [19]. Moreover, low response rates in EMA-based
studies can be a major limitation. Heron et al. conducted a survey of EMA-based studies and found that the survey
completion rate was only 76% [23]. Even when response rates are good, this does not imply that the responses
are of good quality [11].

Passing sensing technologies might provide an attractive alternative to EMAs. These technologies are becoming
more prevalent with the advent of smart devices (e.g., smartphones, smartwatches), especially in college campuses
in the US. According to a recent survey, 91% of US-based college students own smartphones [44]. In addition,
social media is also popular medium of expression for college students [43], which presents a unique opportunity
to investigate how, in such a technology-centric community, we can leverage their choice of technology to assess
their mental health. In this paper, we leverage such passively sensed data collected via ubiquituous technologies
to predict mood instability levels.

Despite the advantages of passive sensing data in terms of their density and high fidelity, this data can only be
collected in a prospective fashion. That is, they are typically only collected through the duration of a study. In
addition, passive sensing streams are unable to capture the external or surrounding factors that can potentially
influence the fluctuations on an individual’s mood.

On the other hand, social media enables us to collect historical and longitudinal data that is self-recorded in
the present. Social media doubles up as a verbal sensor, and in the psychology and psycholinguistics literature,
psychological health states can be inferred via language [12]. Drawing on that, in recent years, social media have
been employed as a passive sensor in mental health studies [15, 55]. When considered via the lens of the Social
Ecological Model [10, 52], the attributes of individuals can be considered to be deeply embedded in the complex
interplay between an individual, their relationships, the communities they belong to, and the societal factors.
Social media provides a passive mechanism to gather quantifiable signals about the social ecological dimensions
relating to an individual’s behavior. Drawing on this theoretical construct and a rich body of prior work, this
paper incorporates similar situated community-specific temporal mood to control for the contextual effects on
individuals’ mood instability. In this paper, we add to this body of work by investigating how passive sensing can
be effective for inferring mood instability in two situated communities — college campuses and workplaces.

3 STUDY AND DATASETS

In order to address our research questions as formulated in the previous section, we conducted a study based on
the StudentLife dataset ! and the Tesserae project.

Ihttp://studentlife.cs.dartmouth.edu/dataset. html
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Table 1. Student Distribution according to their Academic Year in the StudentLife Dataset

Student Category # Students

Undergraduate Students

Freshmen 2
Sophmores 6
Juniors 14
Seniors 8
Graduate Students

15t Year Master’s 14
2" Year Master’s 1
Ph.D. 3
Total 48

Table 2. Demographic Information of Participants in the StudentLife Dataset

Gender # Students Ethnic Identity  # Students

Male 33 Ca.ucaSIan 23
Female 10 Asian 23
African American 2

(a) Gender Distribution of StudentLife Dataset (b) Ethnic Identity of the Participants in the StudentLife Dataset

3.1 StudentLife Dataset

Wang et al. collected and released the StudentLife dataset as a part of their research effort on inferring men-
tal, physical, and academic well-being of students on a US college campus (Dartmouth University) through
smartphone-based data sensing and analysis [68]. The research team recruited 60 students to participate for a
period of 10 weeks during the Spring 2013 semester. Among these, five students dropped out of the class, and
seven students did not continue with the study, resulting in 48 students completing the study. Table 1 and 2
summarizes the dataset through its descriptive statistics.

3.1.1  Types of Data. The StudentLife dataset consists of three types of data: i) passive sensor data; ii) Ecological
Momentary Assessment (EMA) data; and iii) survey data. In what follows we will provide an overview of the
dataset as it is of relevance for the work presented in this paper.

Passively Sensed Data An Android application (“StudentLife", developed by the Dartmouth research team)
collected and stored sensor data from students’ smartphones. The research team used a range of computa-
tional methods for inferring higher level activities (e.g., conversation, activity, etc.) from raw sensor data.
Table 3 lists the types of passively sensed information that were calculated from various sensors and shared
as a part of the public dataset.

Ecological Momentary Assessment (EMA) Data Participants were prompted to answer EMA items multi-
ple times a day. These items asked about the in-situ experience of the students with respect to psychological
(e.g., mood, stress, etc.) and behavioral measures, such as the number of people the study participants
encountered, sleep duration, amount of time spent on different activities, etc. Through these EMAs, the
research team also deployed the photographic affect meter (PAM) [46] to record in-situ mood reports. PAM
is a validated instrument for capturing self-reported moods of people, which is based on Russel et al’s
circumplex model of affect [49].
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Table 3. Passively Sensed Data in the StudentLife Dataset

Sensed Phenomenon Sensor Modalities

Inferred Activity Accelerometer
Audio Microphone
Inferred Conversation  Audio Data
Sociability Bluetooth
Darkness Light Sensor
Indoor Mobility WiFi Data
Outdoor Mobility GPS

Phone Charging Event
Phone Locking Event

Table 4. Overview of the passively sensed data as recorded though StudentLife.

Measure Mean (Days) Median (Days) Stdev. (Days)
Indoor Mobility 56.31 58 10.82
Activity 59.49 63 9.21
Conversation 56.10 58 10.10
Outdoor Mobility 58.47 63 9.60
Photographic Affect Meter 46.76 51 19.11

Survey Data The third type of actively queried data comprises responses to the following validated mental
health questionnaires, which were administered before and after the study. However, none of these survey
data was used for this study.

3.2 The Tesserae Project

Our second dataset comes from the Tesserae study that recruited 757 participants® who are information workers
in cognitively demanding fields (e.g. engineers, consultants, managers) in the U.S. [37, 38, 52, 56]. The participants
were enrolled from January 2018 through July 2018. The study was approved by Institutional Review Board at
the University of Notre Dame who was the lead institution.

Participants responded to a set of self-reported survey questionnaires at the onset of the study and provided
passively sensed data through four major sensing streams : bluetooth beacons; wearable; smartphone agent; and
social media. They were provided with an informed-consent document with descriptions of each sensing stream
and the data collected from each, and they were required to consent to each sensing stream individually. The
data was de-identified and stored on secured data servers with limited access privileges.

The enrollment process consisted of responding to a set of initial survey questionnaires related to demographics
(age, gender, education, and income). The participant pool consists of 350 males and 253 females, where the
average age is 34 years (stdev. = 9.34). The majority of the participants had a Bachelor’s (52%) or Master’s degree
(35%).

Participants were additionally required to answer periodic EMAs once per day for approximately two months.
Of present interest is daily affect as measured by the PANAS-Short scale [64].

Note that this was an ongoing study at the time of writing and this paper uses sensed data collected until August 21%, 2018. A randomly
selected 154 participants were “blinded at source”, and their data is only available for external validation. This paper only analyzes data from
the remaining 603 “non-blinded” participants.
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Table 5. Descriptive statistics of # days data collected in the Tesserae Dataset

Type of Data Range (Days) Median (Days) Stdev. (Days)
Study Duration 16:205 99 46.7
Study Duration (while PANAS-short was administered) 3:56 43 13
Bluetooth (Entire Study Period) 1:159 37 32.6
Wearable (while PANAS-short was administered) 27:56 46 7.2
Smartphone (while PANAS-short was administered) 35:56 48 5.9

To passively collect data about participants’ behavior, this study deployed three continual sensing streams:
bluetooth beacons, smartphone application, and wearable. However, we used two of these streams, which are
explained below:

Wearable Participants were provided with a fitness band (Garmin Vivosmart [4]), which they would wear
throughout the day. The wearable continually tracks health measures, such as heart rate, stress, and physical
activity in the form of sleep, footsteps, and calories burnt.

Smartphone Application A modified verions of the Student Life application [68] was installed on participants’
spersonal martphones (android and iPhones). This application tracks their phone use such as lock behavior, call
durations, and uses mobile sensors to track their mobility and physical activity.

The participants were enrolled over 6 months (January to July 2018) in a staggered fashion, averaging 111 days
of data per participant. Table 5 reports the descriptive statistics of the number of days of passively sensed data
that we collected per participant through each of the sensor streams. We obtained an average of 108 days data
per participant from the wearable and 101 days/participants of data from the phone application. When limited
to days when the PANAS-short EMA was administered, the average available days of data was 49 and 51 for
wearable and smartphone, respectively

4 METHODOLOGY

In this section, we discuss how we estimate mood instability from self-reports of individual’s affective states,
how we excluded participants based on the amount of availabe data, how we calculated features, and finally our
approach to the predicting mood instability score.

4.1 Calculating Mood Instability

The participants, in the StudentLife study, responsed to the PAM EMAs by selecting the picture which best
represents their mood at that particular time. Since, valence and arousal can have four distinct integer values:
{-2,-1,+1,+2} [46], PAM can represent 16 distinct mood states. Table 6 illustrates those 16 mood states and
their corresponding valence and arousal values.

The participants, in the Tesserae Project, reported affect using the PANAS-Short scale. PANAS-Short measures
five positive (alert, excited, enthusiastic, inspired, determined) and five negative (distressed, upset, scared, afraid,
nervous) emotions on a scale of 1 (low) to 5 (high).

We quantify each of these affect responses on the two dimensions of Russell’s Circumplex [47], valence and
arousal, using the Affective Norms for English Words (ANEW) lexicon [40]. ANEW is an affect dictionary, curated
after rigorous psychometric studies that contains a list of over a thousand affect categories, and their associated
valence and arousal scores, and has been used in prior work to understand expressions of mood and affect [57].

Recall that EMAs were scheduled at random time throughout the day for the StudentLife data set. To calculate
mood instability, it is necessary to compute successive differences of valence and arousal responses of the
participants over the entire study period. Hence, we adopted a method proposed by Jahng et al. [26], and
computed the Adjusted Successive Difference (ASD) by adjusting both valence and arousal responses with respect
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to time (See Saha et al. for an example of using this method to infer mood instability of college students based on
their social media usage).

The method works as follows. Let x; be the valence or arousal of a participant’s logged mood state at time ;
such that we can compute the ASDs based on Equations 1 and 2:

Xi+1 — Xi 1)
[(ti+1 - t,-)/median(tm — lLi)]/1
D [EAASD ;. —1)(A) = C(V)T? (@)

1

NZ:l{E{ i1 = xi }—C(A)}Z
i [(tis1 — ti/median(t;.; — t;)]*

In Equation 1, A is chosen by minimizing the cost function, SSEE(1), as defined in Equation 2.

Table 6. Mapping of moods on the PAM scale to valence and
arousal values as proposed in [46] while working with the
StudentLife dataset

ASDi+1

SSEE(})

Ml @ 12:30Pm

Touch the photo that best captures
how you feel right now:

Mood Valence Arousal

Afraid -2 2

Angry -1 1

Calm 1 -1

Delighted 2 2

Excited 1 2

Frustrated -2 1

Glad 2 1

Gloomy -2 -2

Happy 1 1

Miserable -2 -1

Sad -1 -1

Satisfied 2 -1

Serene 2 -2

Sleepy 1 -2

Fig. 1. Screenshot of the Photographic Affect Meter (PAM) Tense -1 2
deployed on an Android smartphone, which was used for Tired -1 -2

gathering mood reports in the StudentLife dataset

We performed a non-parametric smoothing regression method called lowess [13] to calculate the Expected
Adjust Successive Difference (EASD). Afterwards, we calculate the Expected Adjusted Absolute Successive
Difference (EAASD). This eliminates the dependency of EASD on the time intervals. C(A) in Equation 2 is the
EAASD(A) at median time interval.

MIS = MAD(ASDvalence) + MAD(ASDarousal) (3)

Then, we calculated the mean absolute deviation for both valence and arousal for each participant. We refer
to the Mean Absolute Deviation for valence as MAD(ASDylence) and Mean Absolute Deviation for arousal as
MAD(ASD rousal)- After calculating MAD(ASDyalence) and MAD(ASDrousa1), Wwe add them to obtain the Mood
Instability Score (MIS) for each participant (refer to Equation 3). A high MIS (such as for participant 15 (StudentLife
Dataset) and participant b (Tesserae project) in Figure 2) indicates that the participant has high variation of
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StudentLife dataset Tesserae dataset
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Fig. 2. Example Mood Instability Scores (MIS) of three participants from the StudentLife and Tesserae Project datasets.

mood over the study period, whereas low MIS scores (e.g., participant 19 ((StudentLife Dataset)) and participant a
(Tesserae project) in Figure 2) indicates that the participant has low variation of mood.

4.2 Exclusion Criteria

For both datasets, the amounts of collected data varied for all study participants. Note that the focus of this paper
is on predicting Mood Instability (MI) using passive sensors, and we calculate MIS (Mood Instability Score) based
on Equation 3. In Equation 3, MIS is an estimate of the MI of an individual. Given that MI is a personality trait
[36], we investigated whether the numerical estimate of MI (MIS) stabilize (within 5% error margin) after a certain
time.

Hence, we varied (incrementally from 1 to 10 in Student Life, and from 1 to 8 in Tesserae project) the number
of weeks for mood responses (e.g., PAM and PANAS-short) for each participant and calculated their MIS based
on the responses for only those weeks. Then, we calculated the difference of MIS with respect to the original MIS,
which is the MIS value comprising all self-reports. Figure 3 illustrates the results of this investigation.

Both average and median errors of MIS with respect to their final values (MIS after 10 weeks and 8 weeks)
reduce with the increase in number of weeks. The blue line in Figure 3 highlights 5% error margin. Based on our
analysis, at least 3 weeks of consecutive PAM responses and 4 weeks of consecutive PANAS-short responses were
needed from the beginning of the study to reliably infer (within 5% error margin) final MISs of each participant.
Hence, any participant who did not have at least 3 weeks of consecutive PAM reports or 3 weeks of PANAS-short
responses were excluded from further analysis.

4.3 Feature Extraction

For predicting the mood instability of participants, we adopted a regression-based approach since our goal is to
estimate the mood instability scores based on the features. In this section we explain which features we extracted
from the input data that were then fed into the regression backend.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 75. Publication date: September 2019.



75:10 « Morshed et al.

StudentLife dataset Tesserae dataset
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Fig. 3. Mean and median error is calculated by increasing the number of self-reports in terms of weeks and comparing the
MIS with the MIS obtained by taking all ten weeks (StudentLife) and eight weeks (Tesserae), respectively, of self-reported
data for each participant.

4.3.1 Activity. For the Student Life Dataset, Wang et al. [68] inferred four types of activities based on accelerome-
ter data: i) stationary; ii) walking; iii) running; and iv) unknown (but active). The StudentLife application inferred
and logged these activities automatically. We calculated the daily active minutes based on these logged data
resulting in the number of (physically) "active” (i - iii above) minutes for each participant per day. We calculated
the mean and median of this number of active minutes per day over 10 weeks for each participant, and used
those two values as features for representing their activity.

For the data in the Tesserae project, activity was inferred from the Garmin wearable and the smartphone sensor
data. However, the mean activity calculated from wearables and smartphones were highly co-linear. Hence, we
only used the mean activity inference from the wearable. We used the Garmin data for estimating the duration
an individual was active in a day. We calculated the mean and median of the active minutes per day over the 8
weeks for each participant and used these values as features for representing their activity.

4.3.2  Conversation. The StudentLife dataset contained information about inferred conversation of participants.
The conversation classifier logged start and end times whenever it inferred that the participant was engaged in a
conversation or near a conversation. We calculated the amount of conversation (in minutes) per day for each
participant. Subsequently, we calculated the mean and median number of conversation minutes per day over 10
weeks for each participant, and used those two values as features for representing conversations.

There was no conversation data in the Tesserae project.

4.3.3 Indoor Mobility. Wang et al. collected WiFi data from participants’ phones, and later mapped these to
building locations. This helped us in estimating the mobility of each participant, since a change in location would
mean that the participant is mobile. We calculated the number of changes in locations in a day and used that
number as indoor mobility for each participant. We take the mean and median of indoor mobility over 10 weeks
for each participant, and used those two values as features for representing their indoor mobility.

There was no indoor mobility data in the Tesserae project.
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Fig. 4. Scatter plots of two datasets with respect to one of the features, mean activity of participants, used for modeling the
regressors

4.3.4  Outdoor Mobility. Mobility was also inferred from GPS. It is a reliable estimator of outdoor mobility. The
GPS data in the dataset had three movement inferences: i) moving; ii) stationary; and iii) no inference. We used
the “moving” inferences from GPS to calculate the outdoor mobility per day for each participant. Afterwards, we
calculated the number of mean and median outdoor mobility per day over 10 weeks for each participant, and
used those two values as features for representing their outdoor mobility.

There was no outdoor mobility data in the Tesserae project.

4.3.5 Sleep. For the Tesserae project, Garmin objectively inferred the sleep duration of individuals. It helped
us estimating the duration an individual was sleeping in 24 hours. We calculated the mean and median of the
sleep duration, in minutes, per day over the 8 weeks for each participant and used those values as features for
representing their sleep.

There was no objective sleep data in the StudentLife dataset.

4.3.6  Scaling of the Features. Once we calculated features from all modalities, we used min-max scaling to scale
each feature between 0 (min) and 1 (max). For each feature, if the original value of any data point was x, the
maximum value X4, minimum value is x,,;,, then the scaled value (xscq704) can be calculated as follows:

X — Xmin
Xscaled = (4)
Xmax — Xmin

4.4  Automated Assessment, Training, and Testing Protocols

In order to infer the mood instability scores (MIS) of individuals, we used a regression-based (ridge-regression
with regularization) approach since scores are continuous. For both datasets, we found that features and mood
instability scores can be represented with a linear relationship. Our choice of linear regression compared to
non-linear regression was to combat overfitting, which is often the case with non-linear regression. Figure 4
represents the scatter plots of mood instabilty scores of both datasets with respect to mean active number of
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minutes. For evaluting the prediction of our regressor, we used an evaluation metric called Symmetric Mean
Absolute Percentage Error (Equation 5).

100% &y |F, — Ay

SMAPE =
= (1Ad+Fe])/2

®)

100% <
n

A —F
Ay

MAPE =

(6)

=1

SMAPE is a variation of mean absolute percentage error (MAPE), which is an error estimation between the
predicted values and actual values. However, MAPE is not feasible to calculate when the actual value is 0 (Refer to
the denominator in Equation 6). Hence, that cannot be used for meaningful interpretation. That is where SMAPE
helps us estimating the percentage of error with respect to the predicted and actual values. In addition, SMAPE is
particularly useful for comparing non-negative predicted values in comparison to actual values [32], which is our
case. If, for a regressor, a SMAPE score is n%, that should be interpreted as the regressor is predicted a value that
within n% of the final value. Hence, the lower the SMAPE score, the better the regressor.

Our data analysis framework was implemented in Python. Regression models were trained using the scikit-learn
machine learning library for Python °.

5 RESULTS

In this section, we present our results for the two research questions: whether we can predict mood instability
with passive sensing, and how early we can predict mood instability.

5.1 Mood Instability Inference

In the previous section, we defined how we calculated the mood instability score for our participants (equation 3).
In this section, we present the results of the automated MI estimator for all (remaining) StudentLife and Tesserae
Project participants. Table 7 shows the results based on all possible sensing modalities. In this table, A refers
to Activity, C refers to Conversation, O refers to Outdoor Mobility, I refers to Indoor Mobility, S refers to sleep
data during the study period, Baseline refers to the Baseline regressor. Baseline regressor refers to a classifier
that always predicts the mean of the entire sample. The score from baseline predictor serves as an indicator for
inferring whether our trained model is learning from the datasets. Note that from this point onward, we will
refer to modalities using their one letter code (i.e., I, A, etc.). In addition, combinations of letters—referring to the
modalities—without comma (e.g., ACI, AS, etc.) denote the features that were used to train and test the regressor.
For example, ACI means that features generated from activity, conversation, and indoor mobility were used for
training and testing the classifier. Performance in the following section refers to mean Symmetric Mean Absolute
Percentage Error (SMAPE) of leave-one-out validation.

One Modality. The first four rows of Table 7 illustrate the regressor’s performance using only one of the sensing
modalities on the Student Life dataset. Our results highlight that if we are using only one of the sensing
modalities, in StudentLife dataset, for assessment, I was the strongest predictor for classifying MI comnpared to
other modalities. However, I did not perform significantly better than other single modalities.

For the Tesserae project, both A and S performed similarly (third last and second to last row in Table 7). There
was no difference in their performance. This can be explained with the coefficients we got from the previous
section. We found that both activity and sleep show negative correlations with MIS. (Section 5.3) The coefficient
values are also very similar. Hence, we do not see any changes in the SMAPE score.

3https://www.python.org/
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Table 7. Performance with all possible combinations of passive sensing modalities: Activity (A), Conversation (C), Indoor
Mobility (1), Outdoor Mobility (O), and Sleep (S). The Symmetric Mean Absolute Percentage Error (SMAPE) scores are
reported based on leave-one-out protocol. Lower SMAPE scores correspond to better regressors.

Dataset Modality SMAPE Score (%)
StudentLife Baseline I 16.63
Activity (A) I 13.26
Conversation (C) 343
Indoor Mobility (I) | FEN12.74
Outdoor Mobility (O) | I 12.99
Al 11.70
A, C 1 3.37
A, O 12,91
G 1 12,83
C,0 1312
1,0 1242
A G, 2.8
A C,0 I 13.08
C 1,0 I 12.63
ALLO 12,39
AC 1O 12,58
Tesserae Baseline ——33.74
A 2821
Sleep (S) 28,22
A, S 238,30

Two Modalities. For the Student Life dataset, if we take all possible combinations of any two modalities train
regressor, we find that some of the combinations work better than individual modalities. For example, Al
performed best as combined modalities to predict mood instability. In addition, Al performed better than A or
I individually. Only in one circumstance, combining two modalities actually hurts the automated assessment
procedure compared to their individual performances. Note that, I was also the best performer, even though
not statistically significant, among the single modalities. We observed that whenever I was added to any other
modality, it slighty improved the performance. This effect is observed more substantially in the convergence
behavior (next section).

For the Tesserae project, we did not see any change in the regression performance when combining the two
modalities. We found that for Tesserae project, neither sleep nor activity outperforms each other in terms of
SMAPE score. This is due to the fact that both of them have similar, if not the same, effect on the regressor. We
have discussed the correlation of sleep and activity from Garmin with respect to the mood instability score. And,
correlation coefficients are very close. Hence, we do not see any improvement in the performance of the regressor
when we combine these modalities.

Three Modalities. For the Student Life dataset, we evaluated all possible combinations of any three modalities.
Some combinations outperform the individual performance of single modalities but none of them were able to
outperform Al combination. For example, ACI outperformed A and C, but was not able to outperform AL AIO
performed the closest to Al

Four Modalities. Afterwards, for the Student Life dataset, we combined every sensing modalities and found that
it does not outperform AL
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Fig. 5. Convergence characteristic of our classifier using various combinations of sensing modalities: conversation (C), activity
(A), indoor mobility (1), outdoor mobility (O), and sleep (S).

5.2 Early Prediction of Mood Instability

Recall that three weeks of PAM responses and four weeks of PANAS-short responses were sufficient predicting
mood instability; this validates the theory that mood instability is a personality trait [36]. However, setting up
studies to collect self-reported information has several challenges such as response burden for participants [63],
validity of the responses since they are collected very frequently [11], scalability issues [58], etc. Hence, the main
objective of our study is to investigate whether early predictions of mood instability can be made based on the
analysis of passively sensed data only.

For deriving a measure of an early prediction, we varied the number of weeks for all combinations of sensing
modalities for each participant, trained a regression model using a portion of the data and compared the accuracy
of our model with the benchmark accuracy for the respective combination of modalities (SMAPE after ten weeks
for student life and SMAPE after eight weeks for Tesserae Project). For any combination of sensing modalities, we
investigated whether the SMAPE score converges in a stable manner to the final SMAPE score of the respective
combination. Stability of the convergence means that the SMAPE plot does deviate from the baseline (dashed
green line on each subfigure in Figure 5).

For StudentLife dataset, we found that the convergence behaviors were similar for almost all of the regressors,
and that they all converged to the baseline SMAPE score when using a maximum of only three weeks of data.
Recall that our best performing modality combination for mood instability regression was Activity and Indoor
mobility. We found that AI’s convergence plot is closer to the baseline after 3 weeks compared to A or I alone
(Figure 5) The blue line on each plot in Figure 4 represents mean SMAPE scores of the regression model for the
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Table 8. Pearson correlation coefficients of the sensed phenomena with respect to mood instability. All coefficient values are
statistically significant.

Dataset Phenomenon Coefficient
Student Life Project | Active Duration -0.74
Indoor Mobility 0.13
Outdoor Mobility -0.79
Conversation -0.10
Tesserae Project Active Duration -0.12
Sleep Duration -0.14

respective sensing modalities and the X value for the scores denote how many days of sensor data we used from
the beginning of the study.

In the case of Tesserae Project, we found that activity and sleep both had similar convergence patterns, which
we discuss in the next subsection by discussing the correlation of these features with respect to mood instability.
For this dataset, we found that the SMAPE score drops in a consistent manner and comes close to the baseline
SMAPE when using four weeks of data.

While our findings are similar in general for both datasets, we observe a variation in performance across the
two datasets. This can be attributed to multiple things. Firstly, the datasets represent mental and physical markers
for two different populations: student community and employees at workplace. For the student community,
everyone was in the study for the same timeline, which is for an entire semester. However, for the second dataset,
participants were recruited over a period of six months. Secondly, the instruments used for collecting the moods
of individuals were different (Section 4.1). The student population responded to PAM scale for reporting their
mood and workplace participants responded to PANAS-Short scale. These instruments were administered at
different frequency as well. Finally, the sensor streams used for collecting sensor data were not the same across
participants. For example, sleep data was not present for the student population, and the conversation inference
data was not present for the workplace population.

To summarize, using only four weeks sensor data we can reliably infer mood instability in situated communities
as demonstrated for both datasets explored in our study.

5.3 Correlation Analysis of Features

We investigated whether the choice of features are correlated with our target variable, mood instability score
(Table 8). We found that activity duration, sleep duration, outdoor mobility, conversation was negatively correlated
with mood instability score. This validates theoretical grounding that lack of activity [6], sleep[6], sociability
(estimation of conversation) contribute to mood instability. The complete set of convergence plots can be found
in the appendix.

6 DISCUSSION

As part of our analysis, we found that three weeks of self-reported affect measures is a reliable estimator for
inferring one’s mood instability. Mood Instability Scores (MIS) are an estimation of the Mood Instability (MI) of
individual students, and MI is a personality trait [36]. We used a data driven approach to validate this theory.
Based on our results, we highlight two major observations: 1) it is possible to predict Mood Instability using
multi-modal passive sensing data from smartphones and wearables; and 2) we are able to make an early prediction
of MI using less than three weeks of data. In the following subsections, we outline the implications of our
results for academics studying mood instability, and for a variety of stakeholders such as campus and workplace
administrators, policy-makers, and caregivers.
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6.1 Implications for Stakeholders at Situated Communities

Given that individuals have distinctive social ties in situated communities, psychological concerns have the poten-
tial to affect both individual as well as collective well-being [55]. This concerns a variety of stakeholders including
administrators and policy-makers on college campuses and workplaces. University and office administrators all
across the United States have been adopting concrete measures for improving the well-being on campuses [41, 70].
As part of such initiatives, various validated self-tracking tools (e.g., WellTrack ) are offered for free to students.
Such tools use self-report methods for tracking the mental health of individuals. WellTrack asks respondents
to report their in-situ mood. The self-report aspect is likely to create a response burden for individuals, which
can lead to low compliance and thus limited effectiveness. We used a data-driven approach to assess the MI
in situated communities using only passive sensing. Hence, if MI is of interest to the stakeholders of situated
communities such as campus or office administrators, our results highlight the significance of using passive
sensing modalities on smartphones and wearables. Since 94% of the young population between 29-34 years in the
United States use smartphones [44], they can opt in to share their passive sensing data to the well-being tracking
applications, if such applications are designed with the privacy implications discussed in the following section.

The stakeholders have three options if mood instability is of interest to them. First, they can ask the members
in community (students or employees) to take surveys (e.g., Affective Lability Survey) to screen them for MI.
The second option is to ask them to report their mood for three weeks with a self-reporting application such
as WellTrack, and convert these mood report to mood insatbility score. Finally, they can use passively sensed
data from the individuals at situated communities for predicting mood instability. The latter two options are the
insights from our work. Each of these options have advantages and drawbacks.

6.2 Practical Implications

The focus of our paper has been to establish the potential of passive sensing data to infer a clinically significant
mental health measure, mood instability. We have answered this question with two situated communities: college
students and workplace employees. Our research have implications at scale. For example, in the events of acute
crisis (e.g., gun violence, natural disaster, etc), such subtle trait of individuals can be, with permission, monitored
to provide them necessary intervention. Since smartphones and wearables are becoming more and more prevalent,
our study has implications for extending beyond our observed situated communities.

Most smartphones are capable of sensing data that we have used in our study. Hence, with consent, it might be
feasible to collect longitudinal data passively at scale. However, labeling these passively sensed data with mental
health measures is challenging and impractical. Hence, it would be interesting to investigate whether supervised
model learned from a controlled study such as ours can be deployed in an unsupervised dataset to reliably label

the unlabelled data.

6.3 Implications for Researchers

Researchers have to put in investment (time, money, etc.) for gathering data that can be useful for answering
questions related to mental health. Our study showed that, for understanding the trait of mood instability, we need
to collect at least three weeks of passive and actively sensed data. Hence, our work’s implications for research is
to collect at least 3 weeks of data from situated communities of interest. In addition, further investigation could
be made to understand what social and psychological aspects influence these three weeks period, and why we
need three weeks. Understanding these aspects may help us get even earlier estimation of mood instability, and
answer broader but related questions corresponding to an individual’s psychological dynamics.

*https://welltrack.com/
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6.4 Privacy and Ethics

User privacy has always been a concern in any behavior tracking application. Privacy in the context of mental
health is even more sensitive since this topic is very little understood and often stigmatized [17]. Hence, privacy
concerning tracking psychological data is very sensitive, and it must be well regulated. Note that for inferring MI,
we used high-level activity data from each participant (e.g., total number of minutes active in day, total number
of minutes in a conversation, etc.). Such questions pose relatively little privacy challenges, especially in contrast
to asking someone about specific locations they visited throughout the day. Irrespective of the granularity of
such data, strong regulations need to be established first. In addition, ethical decisions about when to intervene,
the granularity of intervention (e.g., individual level, community level, etc.) and how such interventions align
with the individual preference for receiving intervention needs to be well thought out through ethical review
boards on respective college campuses.

6.5 Limitations and Future Work

Social media data has been proven very useful for predicting mood instability in situated communities, and it
additionally functions as a verbal sensor [53, 54]. However, we did not include social media data for either of the
population in this paper. Future work can complement longitudinal and historical social media data with sensory
data to build better models of predicting such psyhological constructs [56].

In addition, these results should not be taken out of context. We do not claim that our results will be reproducible
with the same metrics in other campuses in the US. However, using such a data-driven approach and similar
study design should produce a consistent result for other colleges such as Dartmouth. We caution against making
clinical claims on the basis of our results. In particular, we are unaware of the fraction of our study population who
suffer from clinical mood disorders, and our findings do not identify the clinical nature of mood disorders. Our
work is aimed at complementing existing methodologies to assess psychological well-being both at individual and
collective level. We further acknowledge that our work does not study causality between individual behavior and
their mood. Therefore, even though our study finds certain forms of behaviors, activity, and context of individuals
to be associated with certain kinds of mood instability, their causal relationship remains to be explored in future
research.
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A APPENDIX

Benchmark SMAPE

Prediction of Mood Instability with Passive Sensing «
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Fig. 6. Convergence characteristic of our regressor using various combinations of sensing modalities. In the figures above, C
stands for Conversation, A stands for Activity, | stands for Indoor Mobility, and O stands for Outdoor Mobility
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