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Instinct is a marvelous thing. It can neither be explained nor ignored.

Agatha Christie

There’s always some room for improvisation.

Satyajit Ray



To my Maa, who would have been the proudest and the happiest to see this day.
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SUMMARY

A core aspect of our lives is often embedded in the communities we are situated in. The

interconnectedness of our interactions and experiences intertwines our situated context

with our wellbeing. A better understanding of wellbeing will help us devise proactive and

tailored support strategies. However, existing methodologies to assess wellbeing suffer

from limitations of scale and timeliness. These limitations are surmountable by social and

ubiquitous technologies. Given its ubiquity and wide use, social media can be considered

a “passive sensor” that can act as a complementary source of unobtrusive, real-time, and

naturalistic data to infer wellbeing. This dissertation leverages social media in concert with

multimodal sensing data, which facilitate analyzing dense and longitudinal behavior at scale.

This work adopts machine learning, natural language, and causal inference analysis to infer

the wellbeing of individuals and collectives, particularly in situated communities, such as

college campuses and workplaces.

Before incorporating sensing modalities in practice, we need to account for confounds.

One such confound that might impact behavior change is the phenomenon of “observer

effect” — that individuals may deviate from their typical or otherwise normal behavior

because of the awareness of being “monitored”. I study this problem by leveraging the

potential of longitudinal and historical behavioral data through social media. Focused on

a multimodal sensing study, I conduct a causal study to measure observer effect in social

media behavior and explain the observations through existing theory in psychology and

social science. The findings provide recommendations to correcting biases due to observer

effect in social media sensing for human behavior and wellbeing.

The novelties and contributions of this dissertation are four-fold. First, I use social

media data that uniquely captures the behavior of situated communities. Second, I adopt

theory-driven computational and causal methods to make conclusive research claims on
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wellbeing dynamics. Third, I address major challenges with methods to combine social

media with multimodal sensing data for a comprehensive understanding of human behavior.

Fourth, I draw interpretations and explanations of online-data-driven offline inferences. This

dissertation situates the findings in an interdisciplinary context, including psychology and

social science, and bears implications from theoretical, practical, design, methodological,

and ethical perspectives catering to various stakeholders, including researchers, practitioners,

and policy-makers.
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CHAPTER 1

INTRODUCTION

A core aspect of our social lives is often embedded in the communities that we are situated

in, such as our workplaces, residential compounds, neighborhoods and localities, school

and college campuses, or even physically co-located interest and demographic communities,

including third places [448]. The inter-connectedness and inter-dependencies of our interac-

tions, experiences, and concerns, make individual and collective wellbeing interlinked in

situated communities. For example, an event of crime or violence in a neighborhood often

causes alertness and anxiety among several neighborhood residents. A better understanding

of psychosocial dynamics will also help devise strategies to address wellbeing concerns in

situated communities. However, existing methods to assess wellbeing suffer from limitations

of scale and timeliness. On the other hand, social media, for its ubiquity and widespread

use, can be considered to be a “passive sensor” that can act as a complementary source of

unobtrusive, real-time, and naturalistic data to infer wellbeing. Human behavior is a complex

function of social, psychological, and environmental underpinnings which, when studied

without minimizing confounding factors, may lead to unreliable and inconclusive findings.

By proposing computational and causal approaches that minimize the confounds, this

dissertation leverages social media in concert with multimodal data to examine well-

being in situated communities. However, the feasibility of proactive and real-time social

media technologies for wellbeing may be sensitive to further confounds in practice, which

are invisible in research using retrospectively collected data. This dissertation makes

a case for one such concern, “observer effect” and examines its pervasiveness in so-

cial media behavior in multimodal sensing. The subsequent paragraphs elaborate on the

specific motivations and contributions of this dissertation.

Studies of human behavior and wellbeing have typically relied on self-reported survey
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data from individuals. These approaches suffer from a variety of limitations. For instance,

self-reported data suffers from subjective assessments, recall and hindsight biases, and

are typically retrospective— information is gathered after an event has occurred, or after

an individual has experienced a specific change [620]. Recent research has recognized

the value of in-the-moment data recording and acquisition approaches, such as via active

sensing in the form of ecological momentary assessments (EMAs) that ask an individual

to log their momentary state and activities [651]. However, active sensing is challenged

with scale, access, and cost [565]. EMAs, which are often disseminated through prompts on

smartphones, potentially induce response burden on participants [603]. This leads to a trade-

off between balancing the construct validity of participant responses and compliance [109].

Subsequently, researchers have employed various forms of passive sensing [651], such as

logging an individual’s phone usage or tracking physical activity via wearable sensors, and

these sensing technologies have successfully helped us study human behavior, wellbeing,

and psychosocial dynamics [651].

This dissertation proposes social media as one such passive sensor. It provides an

inexpensive and unobtrusive means to gather real-time and historical data of individuals in

natural settings [529]. The premise is built on the findings of a growing body of work, which

has leveraged social media to identify markers and to assess risk regarding a variety of

psychosocial health and wellbeing concerns [166, 206, 280, 531]. Social media data captures

people’s linguistic expressions, therefore, a unique strength its ability to function as a verbal

sensor to understand psychosocial dynamics. The potential of social media sensing for

complex human behaviors and wellbeing is explained by the Social Ecological Model [102,

647]. This model implies that human behaviors and experiences are not isolated, and are

impacted by our relationships, the communities that we are situated in, and by the events

and factors in the society. Therefore, to get a better understanding of wellbeing we need

to include situated contexts, and this dissertation focuses on thinking about situated

communities as examples to consider situated contexts.
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Situated communities are typically defined over geographic spaces where individuals

share some form of physical colocation (same floor, same building, same locality, same

campus, etc.). Here, individuals share social interactions and bear common and distinctive

social ties and interests [486]. Members of situated communities often access common

resources and institutions dedicated to the wellbeing and support [484]. From a wellbeing

perspective, individual and collective wellbeing is closely associated in situated communities.

Again, the absence of appropriate and proactive support strategies may exacerbate the overall

wellbeing manifold owing to the inter-dependencies and inter-connectedness in situated

communities. For instance, the lack of timely supportive interventions following an external

crisis can proliferate community-cascading acute stress experiences leading to several

negative consequences. An overwhelming amount of stress following a crisis can lead to

long-term negative mental health outcomes, such as post-traumatic stress disorder, acute

stress disorder, borderline personality disorder, or adjustment disorder [668].

However, it is challenging to capture the subjective aspects of individual lives in situated

contexts [27]. As already noted, traditional and most existing approaches of understanding

wellbeing suffer from limitations and are typically reactive in nature [620]. These approaches

are largely based on discrete occurrences of events, and there is no way to continually and

comprehensively assess wellbeing dynamics in situated communities.

This dissertation aims to overcome the gap of studying wellbeing in situated com-

munities by using and complementing social media with multimodal data. In particular,

this dissertation focuses on two common situated communities, which many of us can relate

ourselves with, college campuses and workplaces. For example, within college campuses, I

study the effect of gun violence events on stress levels of college students and the effective-

ness of post-crisis interventions, particularly public service announcements on counseling

recommendations following student deaths on college campuses. For workplaces, I study

how collective workplace dynamics such as organizational culture or individualistic role

dynamics influence individual wellbeing and performance at workplaces.
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The novelties and contributions of this dissertation are four-fold: First, I use social

media data that uniquely captures the behavior of situated communities. Second, I adopt

theory-driven computational and causal methods to make conclusive research claims. Third,

I address major challenges of social media by developing methods to combine social media

with complementary multimodal sensing data for a comprehensive understanding of human

behavior. Fourth, I introspect into drawing meaningful interpretations of online-data-driven

offline inferences. This dissertation situates the findings in an interdisciplinary context,

including psychology and social science, and bears implications from theoretical, practical,

design, methodological, and ethical perspectives catering to various stakeholders, including

researchers, practitioners, and policymakers. The next few paragraphs unpack the novelties

and contributions of the dissertation.

This dissertation leverages social media data that reflect online analog of the offline and

physically co-located situated communities. In the context of college subreddits, I leverage

college subreddit data where college students express and share topics and interests about

their day-to-day academic, personal, and college lives [530, 531, 544]. Similarly, in the

context of workplaces, I leverage Glassdoor data where employees publicly express their

workplace experiences [155], and LinkedIn data which is used as a professional social

networking platform. These datasets uniquely capture individual disclosures amid the social

and environmental context towards a better understanding of wellbeing.

We note that human behavior and wellbeing dynamics are influenced by several intrinsic

and extrinsic factors in both normalcy and crisis. To make conclusive research claims from

social media data, I adopt causal-inference and computational approaches drawing on

machine learning, natural language analysis, and statistical modeling. Causal methods

minimize the confounds and lead to stronger claims about cause-and-effect relationships in

people’s reactions to certain events or environments. For example, to understand the effect

of gun-violence events on student stress, I minimize stress attributable to academic, personal,

relationship, environmental, and other factors in college students’ lives.
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Despite its potentials, social media data comes with challenges, and I propose methods

to address some of the major challenges of social media data, such as the lack of ground-

truth and the lack of social media presence altogether. For this purpose, I augment social

media with multimodal sensing data such as EMAs and passive sensing streams. Next, it

is important to recognize that these computational assessments have potential real-world

implications, so, we need to be careful, and meaningfully understand what we are measuring.

A cross-cutting theme in this dissertation is introspecting and interpreting online-data-

driven offline inferences. A significant component in this dissertation drawing insights

and explaining the observations and potential consequences. For instance, this dissertation

critically explores what life events people disclose on social media, and why?

Together, this dissertation makes methodological contributions in providing computa-

tional techniques and frameworks to measure wellbeing in situated communities, and makes

the case for building rigorous but ethical approaches by critically reflecting on the practical

and real-world consequences. I situate the findings in an interdisciplinary context including

psychology and social science and bears implications from theoretical, practical, design,

methodological, and ethical perspectives catering to a variety of stakeholders, including

researchers, practitioners, administrators and policy-makers. A major implication concerns

building tools that leverage these data-driven methodologies to improve wellbeing in practice.

For instance, campus and workplace welfare staff can use these tools to continually track

people’s wellbeing and act proactively with timely and tailored interventions. However, in

reality, prospective data collection and use may be different and bring new challenges, such

as that of, “observer effect”, or an individual’s tendency to modulate and alter their behavior

with the awareness of being observed [609]. If not accounted for, such a challenge would

bring in new confounds and weaken the effectiveness of algorithms and approaches built on

retrospective data. This dissertation provides a causal methodology to identify and measure

observer effect in social media behavior and provides insights and recommendations on

accounting for this behavior in prospective use of social media and multimodal sensing for
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human behavior and wellbeing.

Organization of the dissertation. The organization of the dissertation is as follows: Chap-

ter 2 discusses the background and related work. Chapters 3 and 4 elucidates computational

and causal methods of examining wellbeing with social media in situated contexts, where

chapter 3 focuses on college campuses, and chapter 4 focuses on workplaces. Chapter 5

describes methods to overcome two challenges of social media as a “sensor” — a) lack of

ground-truth and b) lack of social media data. Chapter 6 introspects into online-data-driven

offline inferences to draw meaningful interpretations, particularly around the efficacy and

tradeoffs of combining social media and offline sensing to personalize predictions, and the

content and factors associated with social media disclosures, particularly those related to

life events. Chapter 6 describes a challenge in prospective settings of social media based

wellbeing sensing called as the “observer effect”, and shows a study on measuring observer

effect in social media behavior within the context of multimodal sensing.
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Table 1.1: Summary of studies completed as a part of the dissertation.

Study Thematic Area Summary Data Location

Modeling Stress with
Social Media Around
Incidents of Gun Violence
on College
Campuses [531]

Social media study
of wellbeing in
situated
communities
(college campuses)

Building a machine learning classifier to
infer stress in social media language. Use
this classifier to study evolution of stress
around gun violence incidents on college
campuses by adopting a causal-inference
based interrupted time-series approach.

Reddit Chapter 3
(3.2)

A Social Media Based
Examination of the Effects
of Counseling
Recommendations After
Student Deaths on College
Campuses [544]

Social media study
of wellbeing in
situated
communities
(college campuses)

This study adopted a causal-inference
framework to examine the effects of
counseling recommendations after student
deaths on college campuses, and then
measured affective, behavioral, and
cognitive changes on social media after
exposure. Another contribution of this
study includes a grief lexicon in the
Circumplex model of affect.

Reddit Chapter 3
(3.3)

Modeling Organizational
Culture with Workplace
Experiences Shared on
Glassdoor [155]

Social media study
of wellbeing in
situated
communities
(workplaces)

Adopting a theory-driven approach to
model lexico-semantic word embedding
representations of Glassdoor posts as
organizational culture. Evaluate the our
model of organizational culture explains
workplace performance better.

Glassdoor,
O*Net, Other
Data: Surveys

Chapter 4
(4.2)

LibRA: On Linkedin based
Role Ambiguity and its
Relationship with
Wellbeing and Job
Performance [536]

Social media study
of wellbeing in
situated
communities
(workplaces)

Computational modeling role ambiguity as
the lexico-semantic difference in LinkedIn
description and job description. Examining
that LibRA explains wellbeing and job
performance better.

LinkedIn,
O*Net, Other
Data: Surveys

Chapter 4
(4.3)

Inferring mood instability
on social media by
leveraging ecological
momentary
assessments [529]

Addressing
challenges of social
media by
complementary
multimodal sensing
(lack of ground-truth)

Leveraging limited ground-truth collected
via EMAs to model mood instability on
social media data. Adopting
semi-supervised learning by using
unlabeled and large-scale social media
data to improve the classifier.

Facebook,
Twitter, EMAs
(Active
Sensing)

Chapter 5
(5.1)

Imputing Missing Social
Media Data Stream in
Multisensor Studies of
Human Behavior [537]

Addressing
challenges of social
media by
complementary
multimodal sensing
(missing social
media data)

Leveraging physical sensor behavior to
predict latent dimensions of (missing)
social media behavior. Evaluating the
performance of the imputation framework
in predicting individual differences in
psychological traits.

Facebook
(Social Media),
Wearable,
Bluetooth,
Smartphone
(Passive
Sensing),
Surveys

Chapter 5
(5.2)

Contextualizing
Person-Centered
Predictions with Social
Media [532]

Introspecting into
online-data-driven
offline inferences

Building person-centric models of
predicting psychological contructs through
social media by contextualizing on offline
behaviors as captured by multimodal
passive sensing. Examining the efficacy
and tradeoffs of personalization efforts.

Facebook,
Multimodal
Passive
Sensing,
Surveys

Chapter 6
(6.1)

Understanding Life Event
Disclosures on Social
Media [538]

Introspecting into
online-data-driven
offline inferences

Examining what life events are disclosed
on social media, and what event-centric
and individual-centric factors explain life
event disclosures on social media

Facebook
(Social Media),
Surveys, PERI
life events
survey [181]

Chapter 6
(6.2)

Measuring Observer Effect
in Social Media Behavior

Observer Effect in
Social Media
Behavior

Examining if people alter social media
behavior in prospective data collection
settings. Adopting time-series and
causal-inference analysis methods to
measure the deviation in actual behavior
from expected behavior post-enrollment in
a multimodal sensing study. Explaining
how this behavior varies with intrinsic
traits.

Facebook
(Social Media),
Surveys

Chapter 7
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CHAPTER 2

BACKGROUND

2.1 Situated Communities

“Situated communities consist of geographically co-located, diverse, and close-knit commu-

nities where individuals share distinctive social ties” (Bin Morshed et al., 2019) [63, 486,

544]. Importantly, spatial and contextual attributes influence the wellbeing of individuals and

collectives within situated communities [233]. Therefore, ensuring that the members cope

with psychological and cognitive demands is essential for both individual and collective

wellbeing. This requires identifying and understanding psychological changes in circum-

stances of both normalcy and crisis. According to Murphey (1999), defining a community

should be grounded in locally meaningful realities [434]. This definition has been adopted

to study several forms of situated communities varying in sizes, granularity, and definitions,

which include neighborhood, school districts, urban or rural areas, college campuses, and so

on [484]. This dissertation focuses on problems that concern the wellbeing in two kinds of

situated communities, college campuses and workplaces. Both these types of communities

are unique in age, demographics, and socio-economic characteristics, as well as day-to-day

activities, goals, and concerns.

2.1.1 Wellbeing in College Campuses

According to 2018 AUCCD survey, the most frequent concern for college counseling centers

around the world are anxiety (58.9%), followed by depression (48.0%), stress (46.9%),

specific relationship problems (29.5%), family concerns (29.0%), suicidal thoughts (28.4%),

academic performance difficulties (28.2%), sleep disturbance (19.1%), social isolation

or loneliness (18.5%), significant previous mental health treatment history (16.5%), and
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adjustment to a new environment (15.8%) [373]. Although these numbers are already a

significant proportion, mental health concerns are known to be under-reported, more so for

college students [195]. In particular, these numbers are largely based on what is reported or

what the student seek support and care for, and given the stigma surrounding mental health

concerns, actual proportions are plausibly higher. Eisenberg and colleagues have extensively

studied the mental health problems and major impediments of seeking mental health care

among college students [195, 196]. Bayram and Bilgel has explored the prevalence and

socio-economic correlations of various mental health concerns among college students [50].

Literature has also outlined major initiatives and factors specifically concerning intervention

initiatives following crises on college campus [66, 432].

Among these concerns, stress constitutes one of the most significant and prevalent con-

cerns. As much as three out of four college students consider themselves to be stressed [379].

A variety of personal and academic life factors and environmental stressors precipitate

college student stress [518]. Stressful episodes, in turn, are associated with cognitive deficits

in students (e.g. concentration difficulties), decreased life satisfaction, and poor health

behaviors [677]. Due to these multi-faceted risk factors and consequences of the stress

experience, a variety of techniques have been employed to devise global and event-specific

measures of stress in college students. For example, several investigations have modified

life-event scales in an attempt to measure global perceived stress [128]. However, due to

reliance on a specific list of events, this approach is insensitive to stress emanating from

unforeseen or unanticipated circumstances such as crises. Additionally, subjective measures

of response to specific stressors have been devised [247]. However, it can be difficult and

time-consuming to adequately develop and validate an individual measure every time a new

stressor is identified, such as following an environmental upheaval [130]. The Perceived

Stress Scale [130] addresses many of these challenges in stress measurement and has been

employed in studying college student stress [518].

However, data obtained from psychometric instruments are sensitive to self-report and
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retrospective recall biases, and may not necessarily reveal factors associated with the stigma

of stress. Moreover, such measurements can only be conducted periodically, posing diffi-

culties in understanding the temporal evolution of college student wellbeing. To address

these limitations, recently, researchers have employed wearable sensing technologies and

experience sampling methodologies to obtain real-time information on psychological symp-

toms [63, 239, 311, 651]. Although these techniques capture rich and dense behavioral

signals, these kind of data collection suffers from limitations related to scale and compliance

as they seek to actively engage the participants. In a parallel thread of research, psycholin-

guistics has revealed that language can serve as an indicator of wellbeing (stress, anxiety,

depression), e.g., essays written by college students [474, 523, 659]. Drawing motivation

from these these lines of research, this dissertation explores social media as a passive and

verbal sensor to assess wellbeing of college students, particularly surrounding crises on

college campuses, such as gun violence [531] and student deaths [544].

2.1.2 Wellbeing in Workplaces

Employee job satisfaction is of prime interest to both individuals as well as organizations.

The complexities related to an individual’s job role, or the expectations applied to an individ-

ual within and beyond an organization’s boundaries can impact their job satisfaction [639].

The wellbeing of individuals at workplace also translates to individual, collective, and orga-

nizational success [350]. A rich body of literature in organizational studies, organizational

psychology, and organizational behaviors has extensively studied the causes and correlates

of improving wellbeing and performance at workplaces [61, 84]. Research postulates that

wellbeing in workplace is an outcome of the interaction between individual characteristics

and those of the working and organizational environment [61].

It is important to emphasize and address the challenges of workplace stress– stress that

arises if the demands of an individual’s roles and responsibilities exceed their capacity and

capability to cope. Work-related stress is the second most compensated illness in Australia,
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and in the U.S. businesses face losses of over $30 billion a year owing to work-related

stress. In order to understand workplace stressors better, De Neve et al. (2013) proposed

the importance of considering subjective wellbeing at workplaces as a coarse construct

that leads to objective benefits across the major life domains of 1) health and longevity, 2)

income, productivity, and organizational benefits, and individual and social behavior [170].

Scholars note that survey questions may not only be responded “carelessly” [339], but

also, because of their underlying parsimonious design, may not be interpreted the same

way across individuals and groups, which may bias survey response. More pertinently, the

use of survey methods for assessing worker wellbeing at the population-level is limited.

It is costly to implement surveys at scale to assess worker wellbeing with high temporal

granularity. Further, Pew survey estimates that response rates for surveys are very low (9%

within the U.S.) [33, 45, 631] and will get lower as time passes due to the use of caller ID

and spam protection. This leads to concerns of representativeness at large. This dissertation

explores a new form of data to address the issue of understanding worker wellbeing by

capturing people’s naturalistic, self-motivated, and self-initiated expressions on social media

to infer workplace wellbeing. By grounding the online-data driven offline inferences in a

theory-driven approach, and validating with other gold-standard existing approaches, this

dissertation illustrates the potential of social media and complementary multimodal sensing

as a proactive tool to inform interventions for improving workplace wellbeing.

2.2 Social Media as a Passive Sensor

Research has demonstrated that social media technologies have a number of benefits as a

passive sensing modality. In particular, it is low-cost, large-scale, non-intrusive to collect,

and has the potential to comprehensively reveal naturalistic patterns of mood, behavior,

cognition, psychological states and social milieu, both in real-time and across longitudinal

time [252]. Considerable research has focused on developing approaches that can (semi-)

automatically assess health and wellbeing by employing social media as a “sensor” for
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both individual- and population- centric assessments [147, 160, 166, 203, 277, 542, 543].

These studies reveal that social media technologies provide a number of benefits as a passive

sensing modality [540].

2.2.1 Social Media for Predicting and Understanding Wellbeing

Literature in psychology has revealed that language can help us understand the psychological

states of an individual [473]. In recent years, several studies have demonstrated that social

media data can be analyzed to reliably infer and understand the psychological and mental

health states of individuals and communities [592]. Research has leveraged social media

data at scale to quantitatively identify conditions and symptoms related to diseases [468],

disease contagion [526], mood and depressive disorders [166], mental health [65, 137,

540], post-traumatic stress disorder [138], eating disorders [111], suicidal ideation [167],

psychotic symptoms [206], addictive behaviors [428], grief [82, 241], and substance and

drug use [112, 540]. From the standpoint of collective wellbeing, Culotta et al. inferred

county-level mental health using Twitter data [147].

Relatedly, social media has facilitated analyzing personality traits and their relationship

to psychological and psychosocial wellbeing, through machine learning and linguistic

analysis [356, 494, 564]. In parallel, crisis literature has also found promising evidence

of supporting the potential of web and social media language to better understand the

psychological impacts of external events and crisis [168, 397, 460, 597]. This body of work

shows that online platforms emerge as a safe haven for people, enabling them to interact

and express themselves during times of upheavals in their environment [23, 220, 397, 597].

Notably, Cohn et al. studied psychological markers in social media language post the 9/11

disaster [131]. The potential of social media in predicting individual and collective wellbeing

is situated in the Social Ecological Model (see Figure 2.1)
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Figure 2.1: Social Ecological Model: Human behaviors are deeply embedded in the complex
interplay between an individual, their relationships, their communities, and societal factors.
Social media provides a passive way to gather quantifiable signals about the social ecological
dimensions relating to an individual’s behavior [102, 149].

2.2.2 Social Media and Wellbeing in Situated Communities

Social Media and Wellbeing in College Campuses

Pertaining to the population of college students, Ellison et al. (2007) in a seminal work, found

positive relationship between social media usage and maintenance of social capital [200]

and Manago, Taylor, and Greenfield found that social media helps college students to

satisfy enduring psychosocial needs [392]. Given the ubiquity of social media use among

youth [479], and because social media platforms enable individuals to share and disclose

mental health issues [197], researchers have begun to leverage social media as an unobtrusive

and passive source of data to infer and understand mental health and wellbeing of college

students [381, 399, 429].

Of particular relevance is Bagroy et al.’s work who built a collective mental health

index of colleges employing social media (Reddit) data [31]. Manago et al. found that

social networking helps in satisfying psychosocial needs of college students [392], and

Moreno et al. studied mental health disclosures by college students on social media [429].

Prior research has also inferred other behavioral attributes and psychological attributes of

college students, using social media [399, 630]. Recently, Saha, Yousuf, Boyd, Pennebaker,

and De Choudhury have demonstrated the construct validity of assessing mental health on

college students’ social media data with respect to mental health consultations on college
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campuses [545].

Social Media and Wellbeing in Workplaces

In the last decade, researchers have used social media technologies to understand employee

behavior [159]. In a seminal work, Ehrlich and Shami compared employees’ use of social

media platforms, particularly their motivations in their use of social media (Twitter) [193].

This work reports that social media use (both at home and work) made workers, especially

mobile workers, feel more connected to other employees, and provided an avenue to boost

personal reputation at the workplace. Studies have found that social media use is positively

correlated workplace wellbeing [573]. Increased social media interactions within the work-

place, through platforms such as IBM’s Beehive, have been found to improve personal

and professional networking, career advancements, and innovation [177, 178, 210, 235].

Other works find positive relationships between workplace and employee behavior, such as

wellbeing, experiences, and engagement through social media technologies [159, 202, 224,

275]. In an early work, Skeels and Grudin conducted a longitudinal study of the motivations

and use of social media platforms by workplace employees [582].

Again, social media and online engagement platforms have facilitated an effective means

to study employee behavior and satisfaction — a body of research that is extensive in CSCW

and HCI area [25, 159, 425, 572, 574, 582]. A variety of analytical and computational

approaches on language and network dynamics have been applied to glean correlates of

employee job satisfaction and wellbeing, such as engagement [299, 425, 572], employee

affect [159, 537], social pulse [573], reputation [322], organizational relationships [85, 237,

424], workplace behavior [398], and job satisfaction [546]. Anonymized platforms like

Glassdoor provide “safe spaces” for employees to share and assess workplace experience [74,

353]. Glassdoor data was used to model brand personalities based on employee imagery

factors such as working conditions, company culture, and management style [674]. Lee

and Kang used Glassdoor data to study the influence job satisfaction factors, and their

16



influence on employee retention and turnover [371]. These studies indicate the value of such

unobtrusive data sources in understanding workplace experiences.

In the professional networking space, LinkedIn has emerged as the primary social media

platform [606, 628]. This platform, which was initially viewed as a “repository of web-

pages”, gradually evolved to be informally known as “Facebook in a suit” [633], which

serves as an online social space enabling individuals to enhance professional visibility [25,

95, 354]. LinkedIn allows the individuals to self-describe and self-promote their profes-

sional portfolio to either seek for new jobs, or to use it as their professional networking and

webpage. Guillory and Hancock found that the public-facing nature of LinkedIn influences

an individual’s accountability and reduces deception in their self-description of their profes-

sional portfolio, which also aligns with Donath’s early research on identity and deception in

online spaces [183]. Researchers have studied the differences and similarities in the self-

presentation behavior and use of LinkedIn in comparison to personal social media platforms

such as Facebook and Twitter [25, 582, 633, 682]. Also, organizations’ use of LinkedIn has

grown tremendously over the years, which also implicitly puts peer- and societal- pressure

on individuals to own and maintain LinkedIn accounts [351]. Utz and Breuer recently

studied the individual-specific factors that influence their behavior on LinkedIn in terms of

networking and informational benefits that the platform facilitates [629], Van et al. inferred

personality traits on LinkedIn self-presentations of individuals [642], and Zide et al. studied

how LinkedIn profiles differ across occupations [685]. Zhang, De Choudhury, and Grudin

studied employees’ privacy perceptions on social media [682].

While all these sources fall under a broad umbrella of “social media”, the motivations

to use any of these platforms might differ based on individual and platform-specific char-

acteristics [25, 159, 193, 531, 682]. These factors are associated with both opportunities

and challenges in leveraging social media data to understand workplace dynamics. This

dissertation draws motivation from the above body of research to leverage Glassdoor data to

measure organizational culture (Chapter 3.1) and LinkedIn data to measure role ambiguity
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(Chapter 3.2). These chapters also show how these online-data-driven metrics are associated

with the individuals’ job performance and wellbeing.

2.3 Social Media in Concert with Multimodal Sensing

With the ubiquity of smartphones and wearables, passive sensing modalities enable conve-

nient means to obtain dense and longitudinal behavioral data at scale [651, 653]. However,

such a data collection is prospective — after enrollment, during the study period. To obtain

historical or before-study data, researchers have recently used social media as a passive

sensor, which enables unobtrusive data collection of longitudinal and historical data of

individuals that were self-recorded [529, 531].

Together, passive sensing modalities in conjunction propagate the vision of “people-

centric sensing” [96], although each one of them may have its own limitation. In the case

of social media, it suffers from data sparsity, and not everyone is equally active on it [529,

680]. Therefore, the variability in the use of social media across individuals may impact the

predictive capabilities of models built on “all” individuals’ datasets — e.g., some features

may have high-variance, some features’ effects may be washed out, and some features

may be downplayed by other features, although these could bear significant signals for

certain cohorts of individuals. Again, it can function as a “sensor” only on those who use it.

This leads to a common problem that many multimodal sensing studies of human behavior

face [370, 529, 651]— they either examine a larger pool of participants with fewer sensors,

or a smaller pool of participants who comply with all sensing streams. This compromises

the combined potential of multiple sensors or the wide spectrum of individual behaviors.

The above literature motivates this dissertation in combining the complementary strengths

of multimodal sensing through computational approaches to infer latent behavioral at-

tributes [62, 154, 179, 472, 497]. Further, I develop methodologies to contextualize predic-

tions on social media data per cohorts of “similar” individuals on the basis of their offline

and physical behavior (captured using in-the-wild sensing technologies).
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CHAPTER 3

SOCIAL MEDIA STUDIES OF WELLBEING ON COLLEGE CAMPUSES

College campuses are close-knit, largely geographically co-located communities, where

students undergo several concerns related to mental wellbeing [196]. Colleges are valued

institutions that help build upon a society’s foundations and serve as an arena where the

growth and stability of future generations begin. College students undergo stress throughout

the year due to academic, personal, relationships, environmental, and social factors [518].

The pervasiveness of stress, depression, anxiety, hopelessness, and suicidal behavior is

significant among college student population [302]. Besides, crises on college campuses can

cause acute stressful experiences and can exacerbate into long-term negative consequences

such as post-traumatic stress disorder, acute stress disorder, borderline personality disorder,

or adjustment disorder [668].

However, methods to assess stress experiences or emotional responses of college students

are plagued by challenges in access to timely information, exacerbated by the social stigma

of the condition, lack of awareness of the condition, and the noted acceptance of stress in col-

leges as a “badge of honor” [31]. Further, campus mental health services services often lack

in resources, staff, and preparedness, leading to long waiting lists and selective/infrequent

consultations of many [232]. This understates an urgent need to meet the rising demand of

mental health services with adequate and accessible resources. Currently, campus mental

health services do not have adequate means to assess the evolving nature of demand or

needs. While periodic surveys of students’ mental health provides some barometer of mental

health incidence, in terms of medication use, daily lifestyle, suicidal thoughts, depression

symptoms, as well as potentially contributing academic, environmental, personal, and social

factors [50], they are accurate only in snapshots, and are prone to retrospective and suscepti-

ble to biases, and may miss out real-time, fine-grained information or sudden fluctuations
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in psychological signals [620]. Self-reported and active solicitation techniques to students’

stress vulnerabilities also suffer from social desirability and stigma associated with stress,

and are often under-reported [31].

To overcome such limitations, passive sources of data have recently been explored,

which provide dense and longitudinal data at scale [651]. Given the ubiquity and widespread

use of social media, especially among the college student demographic, social media data

has also been leveraged as a “passive sensor” that can act as a complementary source of

unobtrusive, real-time, and naturalistic data to infer wellbeing [529]. Social media data

is low-cost, large-scale, non-intrusive to collect, and has the potential to comprehensively

reveal naturalistic patterns of mood, behavior, cognition, psychological states and social

milieu, both in real-time and across longitudinal time for individuals and collectives [252].

Social media language consists of an individual’s personal and social discourse about day-

to-day concerns, and effectively reflects their health and psychosocial wellbeing in a variety

of states and contexts [75, 194, 324]. Linguistic cues and social interactions on social

media platforms have therefore, enabled researchers to study psychopathologies including

depression, anxiety, stress, and loneliness [136, 166, 279, 540, 564].

Along the same lines, this chapter illustrates methods of examining wellbeing on college

campuses through social media. In particular, I show two studies which are in the context of

crises on college campuses, one is around gun violence incidents on college campuses, and

another is around public service announcements (PSAs) of counseling recommendations

sent out after student deaths on college campuses. For both of these studies with social

media data from online college communities on Reddit.

The first study examines how college student stress evolves around gun violence incidents

on college campuses. I first build a machine learning classifier of stressful expressions in

social media language. Next, focusing on 12 incidents of campus gun violence between 2012-

2016, and social media data gathered from college Reddit communities, this study reveals

amplified stress levels following these incidents, which deviate from usual stress patterns
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on college campuses. I examine the linguistic changes around these gun violence incidents

to find distinctive characteristics, such as decreased cognition and academic career-related

conversations, but increased self-attention, social orientation, death and family-related

conversations, and the emergence of collective identity and solidarity.

The second study examines the effectiveness of post-crisis intervention measures in the

form of counseling recommendations after student deaths on college campuses by adopting

a causal inference framework on social media data. I employ statistical modeling and natural

language analysis to measure the psychosocial shifts in behavioral, cognitive, and affective

expression of grief in individuals who are “exposed” to the counseling recommendations,

compared to that in a matched control cohort. Drawing on crisis and psychology research,

the findings suggest that individuals exposed to counseling recommendations show greater

grief, psycholinguistic, and social expressiveness, providing evidence of a healing response

to crisis and thereby positive psychological effects of the counseling recommendations.

3.1 Social Media Data of College Communities

We begin by explaining the data of the two studies on measuring wellbeing on college

campuses. I use social media data of college communities from Reddit.

3.1.1 Why Reddit?

According to a recent Pew Research survey [479], over 90% of U.S. youth use social media.

Reddit is one of the most popular social media platforms which caters to the age group

between 18-29 years: 65% of Reddit users are young adults [479]. This age demography

aligns well with the typical college student population, making Reddit a suitable choice for

studying college communities.

Reddit is a social discussion website consisting of diverse communities known as

“subreddits” that offer demographic, topical, or interest-specific discussion boards. Many

colleges have a dedicated subreddit community, which provides a common portal for
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the students on campus to share and discuss about a variety of issues related to their

personal, social, and academic life. The college subreddits name themselves after the college

communities which they represent and often customize their pages with college logos and

campus images to signal their identity. The subreddit pages use personalized Reddit icons

and member names based on college nicknames and mascots. Table 3.1 shows examples of

college subreddits, along with self-descriptions, number of members (and moderators) and

personalized titles and icons.

The above observations indicate that college communities on Reddit are a reasonable

data source to study the research questions in this dissertation. Bagroy, Kumaraguru, and

De Choudhury established that Reddit data of college communities could be used to estimate

campus-wise mental wellbeing. This study also showed that college subreddit data ade-

quately represents the rough demographic distribution of the campus population of over 100

U.S. colleges, is sufficiently widely adopted in these college campuses, and can be employed

as a reliable data source to infer the broader college communities’ mental wellbeing [31]. Re-

cent research revealed that predicting mental health from college subreddits bears construct

validity with mental health consultations on college campuses [545]. While college students

likely use other social media platforms as well, such as Facebook, Twitter, Instagram, and

Snapchat, obtaining college-specific data from these sources is challenging because many of

these platforms restrict public access of data, and they lack defined community structures.

This induces difficulty in identifying college students and their college-related discussions,

unless they self-identify themselves, which can limit both scalability and generalizability.

3.1.2 Collecting College Subreddit Data

The first step of data collection includes identifying college-wise subreddit data. For this, I

take help of the SnoopSnoo website [586], which groups subreddits into several categories,

one of which is “Universitites and Colleges”. Within the United States, 174 out of the

top 200 major ranked colleges [438] have a subreddit community, at an average of 3000
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Table 3.1: Top 16 college subreddits by member count (June 2018). These subreddits often
customize their page icons and member names with college nicknames or mascots.

Subreddit Self-Description #Members Icon

r/UIUC This subreddit is for anyone/anything related to UIUC 18,900 Illini

r/berkeley GO BEARS! 14,280 bears
r/aggies Anything Texas A&M community related! 13,477 Ags
r/gatech A subreddit for my dear Georgia Tech Yellow Jackets. 13,295 readers
r/UTAustin Welcome to The University of Texas at Austin 13,101 Longhorns

r/OSU The Ohio State University 13,348 4-string QBs

r/ucf Reddit for University of Central Florida 13,348 Knights
r/UCSD Members associated with the UC San Diego. 9,680 Tritons

r/rutgers For news relevant to Rutgers University. 9,654 Scarlet Knights

r/VirginiaTech A reddit for Hokies 9,605Hokies

r/Purdue Purdue University’s subreddit. 9,602 Boilermakers

r/rit Rochester Institute of Technology official subreddit. 9,304 RITedditors
r/UMD The official subreddit of the University of Maryland. 9,172 ReddiTerps

r/uofm University of Michigan subreddit 8,756 wolverines

r/ucla A place for UCLA students, faculty, and fans! Go Bruins! 8,912 Bruins

r/ASU Subreddit for Arizona State University 8,316 Sun Devils

Table 3.2: Example paraphrased comments in the college subreddit dataset.

HBD! I’d avoid beer if you’ve never drank for your first drink.
Join sublease FB group. You’re probably looking for campus lodge, as they’re cheap and allow pets.
Also, I was a bit confused [..] is Math 220 r ISAT 251 apart or is it a pre-requirement to get in?
Definitely get security package. I didnt on my bike and it got stolen last year [..]
im taking 498. its easy, but we did 16 chapters in 12 weeks whole semester its group presentations.
I am sorry, first of all. That’s a loss that nobody should ever suffer, and certainly not during school.
Don’t have sex with anyone on your floor unless you are committed to a year-long relationship.
Don’t go partying instead of orientation week. I did and I regret it to this day.
You will get stressed and you’ll have to learn how to deal with it.
I really don’t want our school to get some sort of reputation, I hope whoever was involved is okay.
We have a good English dept, yet no journalism program. This college does sound great.

members each, and the largest college subreddits like r/UIUC, r/berkeley, r/aggies, r/gatech,

r/UTAustin, r/OSU, and r/ucf have between 13K and 19K members.

To collect subreddit data, I access public archives of Reddit dataset hosted on Google

BigQuery [256]. BigQuery is a cloud based managed data warehouse that allows third

parties to access large publicly available dataset through SQL-like queries. This allows us to

collect both posts and comments in the subreddit along with their author usernames and date

timestamps, besides other metadata information (such as number of upvotes/downvotes).

Table 3.2 reports a random sample of 10 comments from college dataset. A quick manual

inspection of the comments on college subreddits suggests that these are about both seeking
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and sharing information and opinion on a variety of topics spanning across greetings, dorms,

academics, partying, food, leisure, relationship, emotional support, and other miscellaneous

aspects of college life in particular and youth life in general.

3.2 Examining Stress Around Gun Violence Incidents on College Campuses

Stress is a psychological reaction that occurs when an individual perceives that environmen-

tal demands exceed his or her adaptive capacity [570]. One of the populations particularly

vulnerable to stress is college students [50]. Stress is identified as one of the major impedi-

ment to academic performance and student retention in colleges [677]. When stress becomes

excessive, students experience physical and psychological impairment, and intensified stress

can undermine resilience factors, such as hope.

However, external factors are also known to exacerbate college student stress [518].

A prominent set of such environmental attributes includes exposure to traumatic and vi-

olent events, which can profoundly impact college students’ perceived stress and stress

responses [560]. Overwhelming amounts of stress from such acute exposure can affect

students’ ability to cope, and regulate their emotions. Persistent stress episodes may bear

long-term negative consequences [668].

Violent incidents on college campuses, ranging from mass shootings to acts of terrorism

have proliferated in the recent past. A survey from Everytown for Gun Safety Support

Research1 reports that between 2013 and 2016, 76 incidents of gun violence have occurred

on U.S. college campuses, resulting in more than 100 casualties. Many of these incidents

not only affect those involved in the incidents directly, but also leave profound negative

psychological impacts on the general campus community [677]. It is vital to understand the

impacts that violent incidents have within the psyches of college students.

To reiterate, measuring wellbeing and psychological reactions in a proactive fashion is

not only difficult given the challenges of existing methodologies, but also violent incidents

1everytownresearch.org Accessed: 2017-04-09
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may further amplify these limitations. Due to the unique circumstances presented to a

community exposed to a crisis, rehabilitation efforts that use student contributed data on

stress and well-being are likely to be difficult to implement in a timely fashion [620].

This study addresses the above gaps by measuring the perception of stress on college

campuses around gun violence, as manifested on social media. This work is motivated from

two complementary research directions. Studies in psycholinguistics and crisis informatics

have found promising evidence that the language shared on social media can help us

infer psychological states of individuals and collectives [168, 397, 597]. Also, over 90%

of young adults, or individuals of college going age use social media [262], providing a

promising opportunity to study college students’ mental wellbeing passively using social

media data [31]. This study focuses on the following three research questions:

RQ1. How to automatically infer the stress expressions in social media posts?

RQ2. How stress expressions temporally change following gun violence events on college

campuses?

RQ3. How stress expressions linguistically change following gun violence events on college

campuses?

I focus on 12 gun violence incidents reported on U.S. college campuses between 2012-

2016. For each campus, I collect data from their subreddit communities. Targeting RQ1, I

develop an inductive transfer learning approach to infer stress expressed in Reddit posts,

which achieves a mean accuracy of 82%. Using this classifier, I identify high stress posts

shared in the 12 college subreddits. Then, targeting RQ2 and RQ3, I develop computational

techniques drawing from time series and natural language analysis to assess the extent to

which expressions of high stress change in the aftermath of the gun violence incidents.
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3.2.1 Data and Methods

Gathering Campus-Specific Gun Violence Data

This study adopts the definition of gun violence on college campuses as published by

Everytown for Gun Safety Support Research1 – “a shooting involving discharge of a firearm

inside a college building or on campus grounds and not in self-defense”. Everytown for

Gun Safety is an American nonprofit organization, which conducts gun violence research in

the U.S. Given the lack of a single database for gun violence incidents on college campuses,

I adopt a snowball approach to curate our dataset [28, 469] – 1) I collect a seed list of gun

violence incidents on US college campuses from Everytown for Gun Safety Research; also

used in prior work [28]. 2) I augment this seed list with additional incidents that qualify the

same definition as above — I consult credible online sources in an iterative fashion2.

The curated list consist of gun-related violence incidents in and within a close proximity

of a US college campus, all that happened between 2012 and 2017. Besides purely gunfire

based incidents, I note that this list includes attacks with the involvement of gun along with

other weapons and violence (e.g., car ramming, butcher knife etc.).

Finding Campus-Specific Social Media Data Souce

As explained in the previous section, the social media data source of our study comes from

online college communities (subreddits) on Reddit. Among the incidents involving gun

violence on college campuses, I look for colleges which have subreddits with at least 500

subscribers on the day of incident on campus — the choice of this threshold is inspired

form prior research that provides a rough estimate of number of unique subscribers in

college subreddits that sufficiently represents the campus student population [31]. I use

Reddit’s subreddit search functionality feature, and retrieve number of subscribers from

2These sources include gunviolencearchive.org, time.com, motherjones.com, huffingtonpost.com, en.
wikipedia.org; All Accessed: 2017-04-09
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Reddit Metrics3. This leads to 12 such colleges meeting the criteria, and the number of

subscribers in these subreddits ranges between 969 (r/NAU) to 8,936 (r/OSU).

Compiling Treatment and Control Data from Social Media

This study aims to to ensure the measured differences in stress after the gun violence incident

is attributable to the incident, instead of other confounds and latent factors. In the statistics

literature, the concerns around quantification of an “outcome” (stress) are typically mitigated

by adopting randomized experiments, where, given a “treatment” (gun violence incident)

in the target population, an equivalent population is assigned to a “control” (gun violence

free) condition to rule out the effects on the outcome that are attributable to confounding

or omitted variables [307, 477]. Given that an experimental approach would be infeasible

and inappropriate in our case, I adopt a statistical matching technique, drawing from the

causal inference literature [515]. To compile the dataset, for each of the 12 violent incidents,

I identify two separate time periods of campus subreddit data collection:

Treatment Period. I identify a two-month period before and two-month period after the

gun violence incident on each campus. The rationale behind the choice of the duration of

period of analysis stems from prior work [358], wherein it has been observed that effects of

a societal upheaval persists a limited period of time. Because we focus on college campuses

that tend to follow a 4 month semesterly or a 2.5 month quarterly academic system, I deduce

that a four month period around each incident that closely follows the academic system

would be able to glean meaningful stress changes that are attributable to the incident. This is

labeled as the Treatment period.

Control Period. For the combined period of two months before and two months after the

gun-related violence incident on each campus, I identify an equivalent period of four months

from the previous year. Gathering data from exactly the same period in the past year (when

3redditmetrics.com Accessed: 2017-04-09
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Table 3.3: List of gun-related violence in U.S. college campuses during 2012-16 used in
our work, along with the date, number of casualties (#n), and descriptive statistics of the
corresponding subreddit communities.

College Incident #n Subreddit Users #Posts

University of Southern California 2012-10-31 4 r/USC 1,143 2,676
University of Maryland 2013-02-12 3 r/UMD 2,201 9,578
University of Central Florida 2013-03-18 1 r/ucf 2,886 13,708
Massachusetts Institute of Technology 2013-04-18 3 r/mit 1,568 1,682
Purdue University 2014-01-21 1 r/Purdue 3,605 11172
University of California Santa Barbara 2014-05-23 21 r/UCSantaBarbara 3,278 17,682
Florida State University 2014-11-20 4 r/fsu 3,859 8,150
University of South Carolina 2015-02-05 2 r/Gamecocks 1,903 1,661
University of North Carolina at Chapel Hill 2015-02-10 3 r/chapelhill 2,025 1,177
North Arizona University 2015-10-09 4 r/NAU 969 1,025
University of California, Los Angeles 2016-06-01 2 r/ucla 6,301 9,454
Ohio State University 2016-11-28 14 r/OSU 8,936 35,372

no gun violence was reported) likely rules out confounding effects in the measuring temporal

or linguistic differences in stress attributable to academic calendar factors, or seasonal and

periodic events that impact students’ experiences, lifestyle, and activities. Data collected

from this period would minimize the confounds attributable to campus characteristics and

student populations. This is labeled as the Control period.

I use Google BigQuery [256] to collect data from each college subreddit in Treatment

and Control periods. This dataset contains 113,337 posts4 (see Table 3.3). Further, each of

Treatment and Control datasets are broken into Before and After samples based on whether

the dates of posts are prior to or following the date of the reported gun violence incident (or

the same date in the previous year).

Building a Stress Classifier

The first research aim is to measure stress manifested in the social media posts of different

college campuses (RQ1). In the absence of ground truth labels on this data, I adopt a transfer

learning approach, wherein I build a supervised machine learning model to classify stress

expressions in posts into binary labels of High Stress and Low Stress . I use this classifier to

machine label posts in the college subreddits.

4This study refers to ‘posts’ within college subreddits as a unified term for both posts and comments.
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Class Definitions. This study’s stress class definition is based on the established psycho-

metric measure of stress as per the Perceived Stress Scale (PSS) [130]. The widely used

10-item version of PSS identifies three categories, scores ranging: 1) 0-13 are considered

minimal stress, 2) 14-26 are considered moderate stress, and 3) 27-40 are considered extreme

stress. However, typically, very few score in the extreme stress category – except for those

who suffer from chronic stress challenges. Scores around 13 in the scale are considered

average that typically split respondents’ scores into two classes. Moreover, factor analy-

sis [298] is known to reveal two factors, based on this scoring. This motivates our choice of

two classes – Low Stress and High Stress .

Transfer Learning Data. I obtain all 1,402 posts from the r/stress from December 2010

to January 2017. The r/stress community allows individuals to self-report and disclose their

stressful experiences and is a support community. For example, two (paraphrased) post

excerpts say: “Feel like I am burning out (again...) Help: what do I do?”; and “How do I

calm down when I get triggered?”. The community is heavily moderated; so I consider these

1,402 posts as ground-truth data for High Stress posts. Next, I use a second dataset of over

100,000 random posts obtained by crawling the landing page of Reddit; this dataset was

used in prior work as non-mental health related posts in developing mental wellbeing index

for college campuses [31]. I employ this dataset as a source of ground-truth data for Low

Stress posts to build the stress classifier. To approximately balance the two classes, I use a

randomly sampled 2,000 posts from this dataset.

Establishing Linguistic Equivalence. In the transfer learning framework, I employ a

training dataset obtained from non-college campus subreddits. I situate the rationale behind

its appropriateness to build the stress classifier. The primary demographic of Reddit consti-

tutes young adults [262], which is also the predominant demographic of college students.

Therefore, we could anticipate linguistic similarities in the content of the training dataset

and college campus dataset. To quantify linguistic equivalence between the two sources, I
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borrow methods from the domain adaptation literature [157] to conduct pairwise comparison

of word vectors [34, 529]. This technique involves first constructing word vectors using

frequently occurring n-grams in each source of data, and then calculating a distance metric,

e.g., cosine similarity, to assess their linguistic similarity. Cosine similarity of word vectors is

an effective measure of quantifying the linguistic similarity between two datasets [476], and

a high value would indicate that the posts in the two datasets are linguistically equivalent.

To apply this method, I extract the most frequent 500 n-grams from our training dataset,

and the same from the posts of every campus subreddit. Next, using the word-vectors of these

top n-grams (obtained from the Google News dataset of about 100 billion words [417]),

I compute the cosine similarity of the two datasets in a 300-dimensional vector space.

I observe that the similarity ranged between 0.94 and 0.96, with a mean value of 0.95,

providing significant confidence in our ability to use of the training data in building a stress

classifier for college campus posts.

Classification Approach. On the above training dataset, I obtain features for the stress

classifier. I use Stanford CoreNLP’s sentiment analysis model to retrieve the sentiment of

the posts. I obtain the top n-grams (n = 3) from the posts to be used as additional features.

Then, using the sentiment label and the n-gram features, I develop a binary Support Vector

Machine (SVM) classifier (with a linear kernel) for detecting High Stress and Low Stress in

posts. I use this classifier to machine label all of the Before and After post samples shared

in the Control and Treatment datasets associated with the 12 college campuses.

Quantifying Temporal Dynamics of Stress

Corresponding to RQ2, I propose a suite of computational techniques to assess the temporal

changes of stress following gun-related violence on college campuses. Drawing from the

time series analysis literature, on the above classified High Stress posts, I conduct analyses

on : 1) time domain and 2) frequency domain.
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Time Domain Analytic Approach

Normalized Temporal Variability of Stress. First, I examine the temporal variability of High

Stress expressed in subreddit posts around each campus gun violence (Treatment data),

and a similar period in the previous year (Control data). I aggregate posts shared per day,

and then normalize the number of posts labeled as High Stress on each day. In order to

assign weightage to the number of High Stress posts on a day as well as its proportion in

this normalization, I employ a variant of the TF-IDF (term frequency-inverse document

frequency) estimation technique: we multiply the proportion of High Stress posts in a day

with squared root of their count on the same day. I obtain temporal variability in stress for

both Control and Treatment datasets, spanning the Before and After periods. To reduce

irregularities in time series, I smoothen the measures of the temporal variability of stress,

using a non-parametric curve fitting regression method of lowess.

Then, I use 0-lag cross-correlation to assess how the manifestations of High Stress around

incidents differ from the same in a comparable timeframe in the past. Cross-correlation esti-

mates normalized cross-covariance function between two time series, and it is a mechanism

to assess the relationship between a pair of time series signals [69].

Before-After Change Analysis. To quantify the degree of change in stress expressions

around gun violence incidents on college campuses, I estimate changes in the trend of High

Stress preceding and following the incidents. I compute z-scores of High Stress posts on

each day for the Before and After samples in the Treatment dataset. z-scores quantify the

standardized variation around mean value of a distribution and help estimating the relative

changes in a time series data. Since z-scores do not rely on absolute values in a time series,

it suits the analyses spanning across different periods of time (like in our case) when social

media activities might vary. I compute an average change in z-scores between the Before

and After samples by taking difference of the mean z-scores in the two samples. Finally, I

fit linear regression models in Before and After samples to obtain the trend manifested by

High Stress over time.
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Frequency Domain Analytic Approach

Crises events can trigger disruptions in lifestyle, activities, and psychological dynamics of

affected populations [397]. To understand how gun violence on college campuses disrupts

the general periodicity of expression of High Stress in social media posts, I transform the

time series of High Stress posts in the frequency domain. Frequency domain analyses are

particularly suitable to study the rate at which the signal in a time series varies and therefore

helps us assess its periodicity [646]. Using Fast-Fourier Transform (FFT) [79], I obtain the

frequency distribution (measured in terms of days) of High Stress posts in Before and After

samples in the Treatment dataset. I quantify the disruption in periodicities of High Stress

posts by employing: 1) spectral density analysis; and 2) wavelet analysis. For the former, I

compare the spectral density of two waveforms computed using periodograms [661], and

for the latter, I compute symmetric mean absolute percentage (SMAP) difference between

the peaks at the signal waveforms of the two samples.

Quantifying Linguistic Dynamics of Stress

Per RQ3, I assess linguistic attributes that characterize High Stress posts following the

campus gun violence incidents, I adopt two forms of language analysis: 1) psycholinguistic

characterization; and 2) incident-specific lexical analysis.

Psycholinguistic Characterization

I characterize the psycholinguistics of High Stress posts in Treatment data. I employ the

well-validated lexicon called Linguistic Inquiry and Word Count, or LIWC [475]. Borrowing

from prior work [358] to compare the High Stress Treatment posts belonging to the Before

and After samples, I use the following LIWC measures for understanding the expression of

psychological attributes in social media: 1) affective attributes (anger, anxiety, negative and

positive affect, sadness, swear), 2) cognitive attributes (causation, inhibition, cognitive me-

chanics, discrepancies, negation, tentativeness, certainty), 3) perception (feel, hear, insight,
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see, perception), 4) interpersonal focus (categories: first person singular and plural, second

person, third person, indefinite pronoun), 5) temporal references (future tense, past tense,

present tense), 6) lexical density and awareness (adverbs, verbs, article, exclusive, inclusive,

preposition, quantifier, auxiliary verbs, relative, conjunction), 7) biological concerns (bio,

body, death, health, sexual) 8) personal concerns (achievement, home, money, religion) and

9) social concerns (family, friends, humans, social, work).

Incident-Specific Lexical Analysis

I examine the lexical cues shared in High Stress posts in Treatment data for each college

campus. I examine to what extent, incident-specific language directly surface in the High

Stress expressions shared in the college subreddits. I analyze posts shared within 7 days

before and after the day of incident, to focus on weekly patterns. This chosen time window of

analysis is inspired from prior work [492] that demonstrates that major shifts in psychological

states and emotional responses are manifested until 7 days after the date of a crisis incident.

Other work in social media analytics [163, 252] further indicates that human affective

and mental health patterns follow stable weekly patterns, with systematic waning and

intensification through different days of the week.. I extract 50 top occurring n-grams

(n = 1, 2, 3) shared in the 7 days after the incident, and compute Log Likelihood Ratio

(LLR) with respect to their occurrences in posts 7 days before the incident. The LLR

for an n-gram is determined by calculating the logarithm (base 2) of the ratio of its two

probabilities, following add-1 smoothing. Thus, when an n-gram is comparably frequent in

the two week-long periods, its LLR is close to 0; it is closer to 1, when the n-gram is more

frequent in the posts after the incident, whereas, closer to -1, for the opposite.
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Table 3.4: Performance metrics of stress classification per k-fold cross-validation (k=5)

Metric Mean Stdev. Median Max.

Accuracy 0.82 0.11 0.78 0.90
Precision 0.83 0.14 0.77 0.92
Recall 0.82 0.09 0.78 0.88
F1-score 0.82 0.11 0.79 0.89
ROC-AUC 0.90 0.08 0.78 0.95
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Figure 3.1: ROC curve of the stress classifier

3.2.2 Results

RQ 1: Inferring Stress in Social Media

Building a Stress Classifier

Corresponding to RQ1, I present the results of the machine learning classifier of stress. The

binary SVM classifier uses 5000 n-gram features and three boolean sentiment features of

Positive, Negative and Neutral; the number of n-gram features was determined based on

systematic parameter sweep. I use a k-fold (k=5) cross-validation technique to evaluate our

model, and achieve a mean accuracy of 0.82. This accuracy beats the baseline accuracy

(based on a chance model) of 0.68 on this dataset. Table 3.4 reports the performance metrics

of the stress classifier and Figure 3.1 shows the Receiver operating characteristic (ROC)
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Table 3.5: Top 30 features in the stress classifier. Statistical significance reported after
Bonferroni correction (*** p < 0.001).

Feature p log(score) Feature p log(score)

stress *** 9.63 thank *** 6.20
try *** 7.46 meet *** 6.17
work *** 7.20 life *** 6.07
anxiety *** 7.05 sleep *** 6.03
meditation *** 6.88 problems *** 5.98
help *** 6.81 control *** 5.95
focus *** 6.62 job *** 5.89
luck *** 6.62 good *** 5.87
breathing *** 6.44 health *** 5.87
techniques *** 6.33 week *** 5.86
feel *** 6.30 minutes *** 5.83
exercise *** 6.30 doctor *** 5.83
time *** 6.25 mental *** 5.83
play *** 6.23 relax *** 5.72
body *** 6.21 stressful *** 5.67

curve of the same. The classifier yields low number of false positives (average precision

0.82), as well as low false negatives (average recall 0.82), indicating robust performance on

test data.

Table 3.5 reports the top 30 features of our stress classifier. We observe a notable number

of verbs or action-based nouns occur in this list, such as, try, work, help, focus. This also

includes words contextually related to the expression of stress, like stress, anxiety, stressful,

and relax. Aligning with prior work that has examined the correlates or factors precipitating

stress [554], other notable words which occur in the top features include – 1) work-related:

work and job ; and 2) health-related: health, body and sleep.

Expert Validation of Stress Classifier

To understand the temporal and linguistic dynamics of High Stress , specific to our problem

(RQ2 and RQ3), I apply the stress classifier to machine label the posts in both the Treatment

and Control dataset. With the help of three human raters, expert in social media analytics and

the study of affect dynamics, I validate a random sample of 151 of the classifier labeled posts

(79 High Stress and 72 Low Stress posts). Our experts adopt the Perceived Stress Scale [130]
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Figure 3.2: High Stress (HS) and Low Stress (LS) posts in Before , After samples of Control ,
Treatment datasets.

to examine how specific concerns measured in the scale (e.g., feelings of nervousness, anger,

lack of control) are expressed in each post they rated. Presence of these concerns meant

a High Stress label, while their absence indicated Low Stress. Our raters reach a high

agreement in this task (Fleiss’ κ = 0.84), and we obtain an accuracy of 82%5 for the stress

classification.

RQ 2: Temporal Dynamics of Stress

For RQ2, I summarize the results of class-wise stress distribution on each of the campuses

in Figure Figure 3.2. I compare the Treatment and Control datasets spanning the Before and

After periods to find: 1) for the Treatment dataset, the proportion of High Stress posts in

the Before sample ranges between 35% and 45%, averaging at 40% (10,043 out of 24,737),

whereas, the same for posts in the preceding year, ranges between 33% and 43%, averaging

at 40% (9,415 out of 23,430); 2) the proportion of High Stress posts in the After sample of

Treatment dataset, ranges between 33% and 47%, with a mean value of 41% (12,834 out

of 31,370), while a similar period in the preceding year, reveals a mean proportion of 42%

5This should not be confused with cross-validation accuracy of stress classification. The same value in
both the cases is only coincidental.

36



Sep 03
Sep 17

Oct 01
Oct 15

Oct 29
Nov 12

Nov 26
Dec 10

Dec 24

Date

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(a) r/USC

Dec 16
Dec 30

Jan 13
Jan 27

Feb 10
Feb 24

Mar 10
Mar 24

Apr 07

Date

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(b) r/UMD

Jan 22
Feb 05

Feb 19
Mar 05

Mar 19
Apr 02

Apr 16
Apr 30

May 14

Date

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(c) r/ucf

Feb 21
Mar 07

Mar 21
Apr 04

Apr 18
May 02

May 16
May 30

Jun 13

Date

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(d) r/mit

Nov 24
Dec 08

Dec 22
Jan 05

Jan 19
Feb 02

Feb 16
Mar 02

Mar 16

Date

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(e) r/Purdue

Mar 29
Apr 12

Apr 26
May 10

May 24
Jun 07

Jun 21
Jul 05

Jul 19

Date

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(f) r/UCSantaBarbara

Sep 23
Oct 07

Oct 21
Nov 04

Nov 18
Dec 02

Dec 16
Dec 30

Jan 13

Date

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(g) r/fsu

Dec 09
Dec 23

Jan 06
Jan 20

Feb 03
Feb 17

Mar 03
Mar 17

Mar 31

Date

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(h) r/Gamecocks

Dec 14
Dec 28

Jan 11
Jan 25

Feb 08
Feb 22

Mar 08
Mar 22

Apr 05

Date

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(i) r/chapelhill

Aug 13
Aug 27

Sep 10
Sep 24

Oct 08
Oct 22

Nov 05
Nov 19

Dec 03

Date

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(j) r/NAU

Apr 05
Apr 19

May 03
May 17

May 31
Jun 14

Jun 28
Jul 12

Jul 26

Date

0.5

1.0

1.5

2.0

2.5

3.0
N

or
m

al
iz

ed
Vo

lu
m

e
of

H
ig

h
S

tre
ss Treatment

Control

(k) r/ucla

Oct 01
Oct 15

Oct 29
Nov 12

Nov 26
Dec 10

Dec 24
Jan 07

Jan 21

Date

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

Vo
lu

m
e

of
H

ig
h

S
tre

ss Treatment
Control

(l) r/OSU

Figure 3.3: Temporal variation in the expression of High Stress . The reference line represents
the date of gun-violence incident.

(9,528 out of 22,816). These numbers convey that the proportion of posts expressing High

Stress in the college subreddits remains comparably similar over an extended period of time,

despite a gun violence incident on the campus. However, as the ensuing time series analysis

shows, we do observe significant changes in the patterns of expression of High Stress posts

in the aftermath of gun violence.

Time Domain Analysis of High Stress Posts. To understand how stress varies following

incidents of gun related violence on college campuses, I conduct time domain analysis of

the expression of High Stress campus subreddits.
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Temporal Variability of Stress. Figure 3.3 shows normalized volume of High Stress

content in the Treatment and Control datasets. This study observes that High Stress posts

are shared in the college subreddits all throughout the period spanning both the Treatment

and Control datasets, in varying degrees. These posts consist of content ranging across

varieties of academic and college-life specific topics including, admission, examination,

or assignments: “I really should be doing homework right now...”; and “I applied to the

PhD program. I have emailed them twice in the past few weeks, but they keep saying

they aren’t done reviewing applications. [..] What should I do?”. This observation aligns

with prior literature that situates various college-life specific factors to be attributable to

student stress [518], and that stress is a persistent psychological observation among college

students [50].

Specifically examining the day of the gun violence incident and its vicinity, this study

finds a peak of the normalized volume of High Stress posts in a majority of the subreddits,

considerably distinct in r/ucf, r/Purdue, r/UCSantaBarbara, r/NAU, r/OSU. The peak in

stress in the Treatment year, as compared to the Control year supports a weak causal claim:

that the campus gun violence contributes to an increased stress immediately following the

incident. The mean normalized stress in the Treatment year is higher than the same for

Control across all campuses (1.35 vs. 1.19), with the maximum difference observed in r/ucla

(0.49) and r/UCSantaBarbara (0.45).

To assess whether the above reported differences are statistically significant, I conduct

cross-correlation analysis of the temporal occurrences of High Stress posts in Control and

Treatment datasets in Figure 3.6(a). We find negligible values of 0-lag cross correlations

between the two time series, ranging between -0.002 and 0.003, with a mean value of 0.000

. This indicates that the differences between the pattern of High Stress between year of

incident and a similar period in the year prior to it are indeed significant.
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Figure 3.4: Variation of z-scores of stress expressed in the Before and After samples in the
Treatment dataset.

Before-After Change Analysis However, how does the expression of High Stress in the

college subreddits change in the aftermath of the gun violence incidents, compared to that

before? To answer this, I report the findings of our proposed before-after analysis.

Within the Treatment dataset, I conduct a cross-correlation analysis between the temporal

occurrences of High Stress posts, shared Before and After the date of incident. A 0-lag

cross-correlation for Before and After samples (Figure 3.6(a)) ranges between -0.016 and

0.019, with a mean value of 0.005, reveals negligible correlation in the pattern of High

Stress following the incident, as compared to before it. Next, I compute the z-scores of High

Stress expressed on each day (Figure 3.4). At a glance, I observe the mean change in z-score

between Before and After samples ranges from -0.30 (r/NAU) to 0.83 (r/Purdue), with 9 out
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of 12 subreddits exhibiting a positive change in expression of High Stress (Figure 3.6(b)). I

conduct Mann-Whitney U tests of Before and After day-wise z-scores, for which I convert

the dates to ordinals by counting the number of days on the either ends of the date of incident.

These tests reveal statistical significance for each of the subreddits, with U ranging between

13,585 and 18,562,124, with a mean of 2,695,608.

More careful examination of Figure 3.4 indicates that the z-scores of High Stress in the

days following the incident in most of the subreddits have a trend line (based on fitting a

linear model) yielding a negative slope. Specifically, the most negative slopes are found in

the cases of r/Purdue (-0.03) and r/OSU (-0.03). However, the trend line fits for High Stress

z-scores in the Before period do not show such a trend– the mean slope during the period

preceding the gun violence incidents is 0.001, revealing approximately a stable pattern.

Overall, these results suggest that the expression of High Stress in the aftermath of gun

violence shows an abrupt shift in their temporal pattern, peaking significantly around the

day of the incidents, and thereafter showing a downward trend.

Frequency Domain Analysis of High Stress Posts. The final analysis for RQ2 centers

around understanding how the various gun violence incidents on campuses disrupt the

periodicity of sharing High Stress posts. For this, working within the frequency domain, I

apply Fast-Fourier Transform (FFT) on the distribution of High Stress posts in Treatment

data. For each college subreddit, Figure 3.5 shows the distribution of frequencies F (t)

during Before and After periods as heatmaps. The color intensity of a cell in a specific

heatmap indicates the probability of a certain frequency, P (F (t)) (measured in terms of

days). Discussing the main observations from the heatmaps, in case of r/USC (Figure 3.5(a)),

we find that High Stress posts in the Before period shows high periodicity (i.e., exhibit

peaks in expression) around every 4 and 13 days, whereas the same in the After period

occurred at every 5, 7 and 11 days.

To quantify if and to what extent periodicities of High Stress expression in the Before
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Figure 3.5: Frequency distribution heatmaps of stress in Treatment dataset. The x-axis,
F (t) represents frequency where t is in terms of days, and the density of color, Pr(F (t)),
represents the probability of High Stress at F (t).

and After samples, as given by the FFT approach, are disrupted around the gun violence

incidents, I present the results of the spectral density and the wavelet analysis in Figure 3.7.

For the former, the changes in mean spectral densities between the Before and After samples

range from -2% (r/mit) to 96% (r/UCSantaBarbara), with a mean absolute difference of

37%. For the latter, I find that the symmetric mean absolute percentage (SMAP) differences

between the frequency waveforms of the Before and After samples averages at 10, ranging

between 2 (r/fsu) and 24 (r/Purdue). These results suggest that the periodicity of expression

of High Stress was disrupted considerably following the incidents of gun violence on the 12

campuses.

Note that for r/Gamecocks, which shows aberrant pattern compared to other subreddits

in the time domain analysis, according to its frequency domain analysis distribution heatmap

(Figure 3.5(h)), there is a significant change in the periodicity of expression of high stress

following the gun violence incident in the University of Southern Carolina (14% change in

spectral density and an SMAP difference of 17).
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RQ 3: Linguistic Dynamics of Stress

Finally, I present the results of our RQ3: the linguistic dynamics of High Stress expression

in Treatment posts around the 12 campus gun violence incidents.

Psycholinguistic Characterization

In order to characterize the psycholinguistic cues of high stress content shared in the

campus subreddits, I obtain the normalized occurrences of the LIWC attribute categories

from the High Stress Treatment posts shared during the Before and After periods. For

each psycholinguistic measure, to assess whether the differences between the Before and

After samples are statistically significant, I perform Welch’s t-test, followed by Benjamini-

Hochberg-Yekutieli False Discovery Rate (FDR) correction. These results are presented in

Table 3.6.
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Table 3.6: Welch’s t-test comparing the psycholinguistic attributes of High Stress Treatment
posts shared Before and After gun violence incidents. Statistical significance reported
after Benjamini-Hochberg-Yekutieli False Discovery Rate correction (*** p < .001, **
.001 < p < .01, * .01 < p < .05).

Category Before After ∆% t-stat. p

Affective Attributes
Anger 0.008 0.010 23.34 3.558 ***
Anxiety 0.007 0.003 -61.81 -11.499 ***
Negative Affect 0.007 0.009 20.55 3.376 ***
Positive Affect 0.072 0.036 -50.56 -27.978 ***
Sadness 0.002 0.002 14.42 1.554 *
Swear 0.006 0.007 12.46 1.5765 *
Cognitive Attributes
Causation 0.027 0.013 -51.95 -23.312 ***
Inhibition 0.008 0.005 -36.48 -7.824 ***
Negation 0.029 0.041 41.90 13.334 ***
Perception
Feel 0.004 0.006 34.59 3.225 **
Hear 0.014 0.009 -35.49 -7.518 ***
Insight 0.041 0.020 -50.24 -26.544 ***
Percept 0.017 0.018 4.22 1.137 *
See 0.019 0.018 -7.11 -1.896 *
Interpersonal Focus
1st P. Plural 0.013 0.010 -24.94 -5.011 ***
1st P. Singular 0.061 0.080 32.47 15.864 ***
3rd P. 0.015 0.012 -18.78 -3.740 **

Category Before After ∆% t-stat. p

Temporal References
Future Tense 0.037 0.035 -6.15 -2.15 *
Past Tense 0.056 0.061 8.58 3.79***
Present Tense 0.116 0.113 -2.20 -1.79 *
Lexical Density and Awareness
Article 0.117 0.144 22.93 16.72***
Exclusive 0.032 0.064 99.31 33.66***
Preposition 0.219 0.181 -17.38 -21.99***
Quantifier 0.023 0.043 86.01 25.47***
Biological Concerns
Bio 0.012 0.014 10.62 2.48 **
Body 0.004 0.005 16.30 2.07***
Health 0.003 0.007 97.39 8.84***
Death 0.001 0.003 155.22 6.41***
Personal and Social Concerns
Achievement 0.037 0.016 -55.66 -25.51***
Home 0.005 0.009 93.94 10.15***
Money 0.022 0.011 -48.75 -16.66***
Religion 0.003 0.004 43.82 2.87 **
Family 0.002 0.003 41.67 2.61 **
Friends 0.004 0.006 65.55 5.35***

Affect Starting with Affective Attributes, we observe that High Stress posts in the After

dataset show higher occurrences of anger, negative affect and swear words. Some example

post snippets include, “why the hell do they have a giant assault rifle?” and “I guess since

campus is a gun free zone we’re all fucked”. At the same time, High Stress posts in After

period show significantly lowered levels of positive affect words. This indicates that the

students may be engaging over Reddit to express their relatively higher negative perceptions,

reactions and thoughts apropos the gun violence incidents.

Cognition and Perception For Cognition and Perception, we observe that, words related

to causation, inhibition and insight are used significantly lesser in the After period. Prior

work has related this psycholinguistic expression to lowered cognitive functioning [31]

which is a symptom of high stress. However, negation words occur more frequently in the

After period, and so do the words related to feel. Per prior work [475], this kind of greater

perceptual expressiveness is known to be associated with language that depicts personal

and first-hand accounts of real world happenings, events and experiences. Likewise, in this
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study, these changes indicate that the subreddit users are more expressive of their feelings

in the aftermath of the campus gun violence incidents, e.g., “I’m already home, but can’t

explain how am I feeling. No idea how to deal with this. Anything normal does feel way out

of place at this point.”

Linguistic Style Corresponding to linguistic style attributes, Before and After High Stress

posts show distinctive Interpersonal Focus—we find that the use of 1st person singular

pronouns increases by 32% after gun violence, however that of 1st person plural and third

person pronoun words decreases. These patterns are known to indicate heightened self-

attentional focus and greater detachment from the social realm [475]. Therefore, the users

posting in the college subreddits may be resorting to social media to share their personal

experiences and opinions about the incident. In the case of Temporal References, we find

decreased use of future and present tense, and increased use of past tense in the After period.

Higher use of past tense indicates tendency to recollect prior experiences and events [613],

which in this case, might be an orientation to discuss the gun violence incident on the campus.

With the exception of preposition words, all other function words (exclusives, articles and

quantifiers) show significant increase in the After period, which are known to be related to a

personal narrative writing style, often characteristic of crisis-inflicted populations [131].

Biological Concerns These results show that words referring all of bio, body, health and

death increase in the After period. The High Stress posts shared following the gun violence

incidents tend to relate to the after-effects, casualties, and implications of the incident for

students’ safety, well-being, and life (example post excerpt: “I hope that no one is seriously

injured or killed”).

Personal and Social Concerns Personal and Social Concerns show revealing patterns.

First, words related to achievement occur significantly lower (55%) in the period After

the gun violence incidents. This category consists of words like ‘confidence’, ‘pride’,
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‘progress’, ‘determined’. The college subreddits which are generally a platform for college-

life discussions among students, lower usage of achievement words indicates a decline in

tendency of engagements in career and academic topic related discussions in the aftermath

of the campus gun related violence. Next, the usage of words relating to social life and

relationships (such as, family, friends and home) increase after the incidents. This could

indicate that the college subreddit users shared social wellbeing impressions and perceptions

of solidarity in the context of the incidents. Words related to money, which occur significantly

less frequently in the After samples, show that although money is a generic contributor

of stress [612], it does not remain so in the High Stress posts following gun violence on

college campuses. In addition, some of these incidents, such as the UNC Chapel Hill or the

OSU attack were violence attributed to religious radicalism or religious hate-crime, which

plausibly contribute to the higher occurrence of religion words in the After period.

Temporal Trends of Psycholinguistic Measures Finally, I examine the temporal trends

of occurrences of the significant psycholinguistic measures in High Stress posts: ref. Fig-

ure 3.8. Most of the measures attain a peak in their occurrences in the immediate vicinity

of the gun violence incident (day: 0). Interestingly, this peak is also the maximum value

attained by all of the measures, with an exception of feel (Figure 3.8c).

Comparing among the measures belonging to Affective Attributes, we notice that positive

affect is expressed consistently higher than any other measure in this group. There is a

revealing shift in trends of the usage of Interpersonal Focus (Figure 3.8d) — 1) The

observations suggest a sharp increase in the usage of 1st personal plural pronouns, overtaking

the usage of 1st person singular ones just immediately following the day of incident, which

aligns with the emergence of collective identity as observed in prior work [397]. 2) But with

days to follow, the occurrence of 1st person singular takes over, indicating a rise in usage

of words referring to self attention. In addition, it is interesting to note the occurrence of

death, agrees with prior work [241] — where although “death” has a minimal occurrence
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Figure 3.8: Temporal variation of statistically significant psycholinguistic attributes of High
Stress Treatment posts shared Before and After gun related violence.
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Figure 3.9: Top 30 keywords used in High Stress posts on the day of gun violence incident
(day = 0) across all the subreddits.

consistently in the Before period, it achieves substantial concentration in High Stress posts

just following the day of incident for a few days.
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Table 3.7: Lexicon of selected n-grams (n = 1, 2, 3) occurring considerably higher in posts
shared 7 days after the day of gun related violence, as compared to 7 days before.

Subreddit After>Before (LLR ≥ (0.75))

r/USC problems, night, security, shooting, party, events, fingerprint, entrances, email, dps, campus center,
event, trojan, defense, safe

r/UMD athletics, gun, supercar, cars, shoot, department, school, fire, community, sports, college, park
r/ucf assault, assault rifle, weapon, tower 1, rifle, gun, police
r/mit state, lincoln, stay safe, watertown, officer, officers, police, scanner, second, shots, shots fired, house,

bpd, unknown, clear, confirmed, custody, dexter, fired, fuck, spruce, suspect, black, boston
r/Purdue shooter, police, shooting, news, place, building, ee, campus, guy, heard, day, gt, know, student, people,

today
r/UCSanta-
Barbara

videos, victims, gun, mental, isla vista, guy, news, community, post, police, person, help, feel, love, iv, life,
point, friends

r/fsu mental, safe, shooting, strozier, ok, news, library, shooter, friends, victims, hope, stay, post, time, people,
information, good

r/Game-
cocks

alert, murdersuicide, public health, public health research, research center, shooter, shooting, students,
support, lockdown, faculty staff, counseling center, building, health research center, cancelled

r/chapelhill pretty, muslims, writing, religion, high, hicks, help, pound, students, execution style, execution, universal,
world, abusalha, 30 serv, support, parking, unc

r/NAU astronomy, jones, kill, kill people, meth, problem, harder, professors, self, self defense, shooter, shot,
tour, guns kill people, year, guns, fight, class, defense, gun, asu, shooting

r/ucla safe, confirmed, police, klug, shooter, gun, guns, health, mental, saying, professor, situation
r/OSU safe, police, muslims, gun, removed, parking, post, stay, wrong

Incident-Specific Lexical Analysis

The final set of results includes analyzing linguistic markers as manifested in the subreddits

immediately after gun violence on a college campus. For this, within the High Stress Treat-

ment posts, I first extract the 30 most occurring n-grams (n = 1, 2, 3) on the day of incident.

The 30-day Before and After temporal trends of usage of n-grams is shown in Figure 3.9

in a heatmap format. We note some contrasting patterns— for instance, ‘class’ occurs

consistently in High Stress posts until the incident dates, but its usage declines considerably

in the week following the gun related violence. On the other hand, subreddit users converse

about ‘people’, ‘friend’, ‘hope’ and ‘feel’ a lot more in the immediate aftermath of the

event, as compared to their overall occurrences—aligning with the observations drawn from

the psycholinguistic analysis above, involving the emergence of a social orientation and

greater perceptual expression following the incidents. The n-grams describing the nature,

manifestation, and implications of the specific campus incidents, e.g., ‘police’, ‘shooting’,

‘safe’ and ‘gun’, have dense and increased concentration of usage following the day of the

incident.
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Next, I drill down further into the 12 colleges and, employ the Log Likelihood Ratio

(LLR) measure to extract a lexicon of the top 50 n-grams (n = 3) from the High Stress posts

within 7 days following the day of gun violence incident, and then compare their occurrence

in High Stress posts in the 7 days preceding the day of incident. Table 3.7 reports the

n-grams, for which n-grams with LLR of over 0.75, occur predominantly in posts after the

incident, and are distinctive characteristic of what is discussed in the subreddits specifically

in the After period.

Taking a close look at Table 3.7, we observe that this lexicon includes words which

embed information specific to the incidents that occurred on the different college campuses

under our consideration. For instance, we notice the lexicon to encompass words related to

the geographical site of the incident such as – ‘campus center’ in r/USC, ‘tower 1’ in r/ucf,

‘isla vista’ in r/UCSantaBarbara, ‘library’ in r/fsu, ‘public health’ in r/Gamecocks, and

‘parking in r/OSU. Next, we note the presence of the word ‘videos’ in r/UCSantaBarbara

and ‘murdersuicide’ in r/NAU, which are coherent with how the incidents unfolded at these

campuses. Additionally, agreeing with the findings from the psycholinguistic characteriza-

tion presented above, we observe the presence of ‘muslims’ in r/chapelhill and r/OSU, where

the incidents were attributed to be religious hate-crimes or radicalism. We find the usage of

words relating to the victim or the perpetrator’s name and occupation in some of the subred-

dits, such as r/mit, r/Gamecocks, r/chapelhill and r/ucla. Summarily, this analysis shows that

high stress expressed in posts of the college subreddits in the immediate aftermath of the

gun related violence may be a consequence of the incidents in the respective campuses.

3.2.3 Discussion

I employ a causal inference based analytical approach, in conjunction with computational

techniques to examine the evolution stress following gun violence events on college cam-

puses. The findings suggest that, compared to a control (gun violence free) time period on

each campus, there was a significant change in the volume of posts expressing high stress
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following the violent incidents, including a considerable change in the patterns of stress

expressed in the immediate aftermath of the incidents. Then, psycholinguistic characteri-

zation of the high stress posts indicates that campus populations exhibit reduced cognitive

processing and greater self attention and social orientation, and that they participate more

in death-related conversations. Additionally, a lexical analysis of high stress posts shows

distinctive temporal trends in the use of incident-specific words on each campus, providing

further evidence of the impact of the incidents on the stress responses of campus populations.

I situate the findings in the context of psychological theories surrounding trauma and

crisis. I derive two major observations: 1) Psychological stress may be automatically inferred

from social media content by employing supervised learning approaches; and 2) Inferred

stress levels in a college campus may indicate the responses of individuals exposed to

the reported gun-related violence incident. To arrive at these findings, this study make a

methodological contribution in this study as to how stress changes, temporal and linguistic,

can be measured following a violent incident on campus, drawing from machine learning

and time series analysis techniques. Therefore, this study bears implications for researchers

intending to study the socio-psychological responses of a population exposed to a crisis,

and those interested in developing technologies to assist vulnerable populations following

traumatic events. I discuss these implications below.

Theoretical and Psychological Implications. Freud’s psychoanalytic theory [228] ar-

gued that external reality, for example, traumatic events, can have profound effects on an

individual’s pysche, and can be considered to be the cause of emotional upheaval, stress,

and traumatic neurosis. He suggested that the personal impact of the trauma, the inability

to find conscious expressions for it, and the unpreparedness of the individual can cause a

breach to the stimulus barrier and overwhelm the defense mechanisms [227]. This study

examines these theoretical constructs in a data-driven manner. For instance, the linguistic

analytical methods suggest distinctive psycholinguistic cues in high stress posts shared
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after the gun violence incident compared to before. As an example, language related to

biological concerns increase remarkably following the incident. In contrast, more general

topics closely related with stress in a college population, such as financial and career-related

concerns [518] exhibit significant reductions following the incidents.

Further, the incident-specific lexical analysis makes a notable finding — the content

shared on social media immediately following the violent incidents are largely topically

related to the events. McCann and Pearlman [407] adopted the framework of cognitive

theory to propose seven fundamental psychological need areas following experience of a

crisis event: frame of reference, safety, dependency/trust of self and others, power, esteem,

intimacy, and independence. Trauma, they argue, may cause disruptions in any of these need

areas and thereby lead to troublesome emotions and thoughts such as stress. Words such

as “stay safe”, “support”, “hope”, “help”, “self”, that increase in usage in high stress social

media posts following the incidents, indicate the expression of many of these needs.

These methods also help uncover the nuances in acute stress responses on college

campuses following the violent incidents, that tend to offset more persistent chronic stress

expressions. For instance, although students undergo stress all throughout the year because

of academic and personal reasons [518], stress expression of a campus changes considerably

after gun violence. In essence, our findings show that, as revealed by campus social media

posts, stress as a construct, is prevalent (possibly chronic in nature) across time, yet the nature

of this construct changes drastically (possibly turning more acute) around a critical crisis

incident. This also reveals temporal and linguistic “signatures” of expression of such acute

stress, such as altered periodicities or increase/descrease in specific psycholinguistic words

can be gleaned with our proposed machine learning and time series analysis approaches.

These findings support similar observations made with respect to the manifestation of

psychological states in a response to chronic violence [168], wars [397] and terrorist

attacks [377]. Moreover, closely aligning with prior work [23], we also observe that the post

violence acute stress levels subside within days to follow, and approach baseline levels of
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generally persistent chronic stress. This could be because life goes back in order, with other

aspects of campus life taking priority. This interpretation is consistent with prior work in

crisis informatics [397], as well as Foa and colleagues’ emotional processing theory [221].

They noted that emotional experiences, such as anxiety and stress, are often relived well

after the original traumatic events have occurred, although the frequency and the intensity

of emotional reliving usually decreases over time.

Practical Implications. The computational techniques provide a robust mechanism to

quantify the impacts and severity of a crisis, as well as the corresponding community

responses. These techniques will find use as unobtrusive sensors of stress and its linguistic

and temporal changes during crises. These methodologies may be leveraged in future

situations where causes of stress may not be so apparent or known, as was the case in

our study, e.g., assessing stress and associated student responses in everyday (crisis free)

contexts, where a variety of day-to-day but unanticipated academic, personal or social

concerns may contribute to stress.

The social media of specific affected communities (college campuses) can help identify

unique “signatures” or idiosyncratic patterns in stress expressions. The temporal trajectory

of high stress following the incident at the University of Southern California was distinct

from the others; so were the kinds of linguistic cues that surfaced in social media content

immediately after the incidents. These approaches may help discover the presence of

protective factors surrounding stress in specific communities, including how a campus’s

stress expression deviates from the expected pattern of stress on any campus affected by

a similar crisis. This information can be valuable to crisis rehabilitation efforts, including

how specific campuses may adopt policies or strategies to enhance the idiosyncratic aspects

relating to the community, that exacerbate or protect against stress.

The impacts of a violent incident transcend observed casualties, and could be perceived

very subjectively at individual level. This work provides a way to account for the “invisible
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wounds” [306] or “hidden casualties” [491] in a crisis, which tend to not be measured

adequately. In essence, this study observes that in the aftermath of campus gun violence,

campus-specific social media like Reddit, acts as a unique platform allowing campus popu-

lations to express emotion and stress about the circumstances, (semi) anonymously, amid

feelings or perceptions of fear and trauma. These techniques enable capturing a “quantitative

narrative” of the self-disclosed stress experiences of campus populations exposed to crisis

events, which can eventually inform historical accounts about campus life.

Design Implications. This research bears implications for designing technology that

can support improving mental health provisions for campus populations during times of

upheavals. A significant challenge for college administrators is providing adequate mental

health services, such as around aggravated stress levels, in a proactive, real-time manner.

These efforts become even more difficult in the face of campus crises, due to the disruption

in everyday life and activities on campus. This work shows promise in enabling technology-

assisted means to tackle these challenges.

Sudden bursts of stress can be detrimental in the long-term [409]. Our work can help build

population-centric stress tracking tools. These tools can advance the current practices in how

college authorities engage with the student community following crisis incidents. Typically

these practices include broad campus-wide communication of the context and outcomes

of the incident, followed by specialized programs to direct psychological counseling and

rehabilitation support to students who may need help. This work can complement existing

techniques and tools for assessing stress among individuals [688]. These tools can help

inform the college authorities to learn about the pervasiveness of stress following crises

and the degree of disruption from normalcy. This can enable the college stakeholders in

making empirically informed decisions about the nature of crisis communication that should

take place on campus, such as balancing informational alerts with adequately sensitive

and focused assurance. Additionally, administrators can gather a better understanding of

52



students’ counseling or rehabilitation resource needs. They can identify specific stress

induced temporal or linguistic responses that negatively impact specific student groups. This

can allow them to take adequate action in a timely manner, e.g., conducting campus-wide

awareness and mitigation campaigns on mental wellbeing, or making tailored provisions to

improve mental resilience and morale of the student body.

Next, often following campus violence, administrators need to make policy decisions

for maintaining the safety and morale of the student body. For example, in the wake of

2012 shooting in University of Southern California (which was considered in our analysis),

the administration incorporated heightened security measures and visitor restrictions in

the campus6. The patterns and observations gleaned from tools that leverage our methods,

such as the incident-specific linguistic markers, could provide evidence-based, student-

contributed insights to administrators so as to make informed policy decisions to scaffold

campus life succeeding crises. Over time, this ability to identify markers of student stress

and their dynamics can also contribute to improved preparedness in campus around future

crisis events.

3.3 Examining the Effects of Counseling Recommendations After Student Deaths

on College Campuses

Crisis events on college campuses can have a profound negative impact on the overall

wellbeing of the campus community [608]. One such crisis that is frequently encountered

is the death of a student. Recent statistics report that two in every 1000 U.S. college

students die every year, because of accidental, suicidal, and acute and chronic illness

reasons [625]. Among these, campus suicides have almost tripled within the last fifty years,

and about 18% of undergraduates and 5% of graduate students have had lifetime thoughts of

attempting a suicide [604]. These alarming statistics not only hint at the strains of campus

and academic life, every such tragic incident also has widespread repercussions by affecting

6latimesblogs.latimes.com Accessed: 2017-04-15
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the general psychological wellbeing of the campus [669]. In fact, some of the most dangerous

consequences of such crises include “copycat suicides” (when student suicides come in

clusters due to social contagion effects) [483], or heightened risk to serious mental health

challenges like post-traumatic stress disorder [549]. Given students already under-utilize

mental health care resources due to social stigma, lack of awareness, and the pressures of

academic life [196], unanticipated crises like student deaths bring additional challenges to

the mental health amelioration efforts on campuses.

Crisis events on college campuses, such as student deaths, therefore, underscore the

necessity to reinforce existing intervention programs or undertake new initiatives toward

reducing the psychological effects of the crisis in the student community [66]. A common

approach adopted by campus administrators involves public communication and outreach,

promoting information about various student-centric support, coping resources, and coun-

seling services. Given the pervasive use of web-based technologies in the college student

demography [479], these recommendations are often shared via email and social media, also

because such communication channels bear the potential to provide a common, stigma-free

platform to comment and discuss about the event itself, as well as to grieve and cope.

Figure 3.10 shows an excerpt of one such post shared by a campus administration on Reddit.

This study refers to such posts as “counseling recommendations.”

However, significant methodological gaps exist in measuring the effectiveness of these

post-crisis interventional recommendations shared by campus officials [563]. These range

from a reliance on retrospective self-reports, to the difficulty in causally determining the

link between exposure to these recommendations and the psychological states of students

following a crisis [172].

I address the above gaps in examining the efficacy of counseling recommendations

following student death incidents on college campuses, targeting two innovations. First, I

use unobtrusively gathered social media data of college Reddit communities, where these

recommendations are shared by campus officials. Social media helps us track individuals
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Figure 3.10: An excerpt of a counseling recommendation post shared on r/gatech following
the death of a Georgia Tech student.

who engage with these recommendations and what effects they have on their psychological

states. Then, as a second innovation, I develop a causal analysis framework that statistically

models the shifts in psychological states characterizing individuals who are exposed to

these recommendations, and those in a control group. As indicators of these changes,

drawing from natural language analysis (word embeddings) [417], the crisis literature,

and psychological theories like the “grief work hypothesis” [562], I develop the following

categories of measures: a) affective changes, specifically around the expression of grief (I

model a new “grief lexicon”), b) behavioral changes, and c) cognitive changes.

Focusing on a dataset of ∼400M posts and ∼350K users spanning 174 college commu-

nities on Reddit, the findings show that, compared to baseline scenarios, in the aftermath

of student death incidents, individuals who are actively exposed to the recommendation

(via commentary) tend to show statistically significant shifts in their psychosocial attributes
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compared to a matched control cohort who do not engage with the recommendations in the

same manner. Examining these changes, I find that the exposed group demonstrates greater

expressivity of grief, shows signals of social integration and diversity in interactions, and

exhibits improved cognitive processing as well as linguistic and stylistic complexity. This

study situates the findings in the crisis and mental health literature that associate such shifts

with a healing response, which in turn are indicative of benefits to one’s psychological state.

This study provides the first large-scale, (social media) data-driven study of the effects of

post-crisis counseling interventions.

3.3.1 Data and Methods

Data

For this study, I use Reddit as our data source. Below I describe the approach to collect the

datasets for our study.

Counseling Recommendations (CR) Dataset. Starting with a seed list of generic and

campus-specific keywords, I first use an iterative snowballing technique to build a list

of search queries to identify counseling recommendation posts in the 174 subreddits: 1)

Generic Keywords are related to death and counseling, such as “death”, “suicide”, “coun-

sel*”, “rip”, “therapy”. This list also includes phrases related to email, and positions of

responsibility, like “email”, “email dean”, “president”, 2) Campus-specific Keywords are

specific to a campus, which I compile by consulting the official college websites to obtain

names of the campus administrators (e.g., president or dean) and the counseling body. Using

these keywords, I query Reddit’s search interface for counseling recommendation posts, and

manually inspected the returned posts for correctness in terms of this study’s definition of

counseling recommendations. This leads to 88 counseling recommendation posts across 46

subreddits, which I denote as the CR dataset.
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Table 3.8: Datasets on student death (SD) and counseling recommendation (C).

SD ¬SD
C CR B2

¬C B3 B1

Baseline Datasets. Additionally, towards quantifying the psychosocial changes attributable

to the counseling recommendations following student death events instead of other hidden

factors (e.g., changes associated with active participation in any content shared by campus

officials, exposure to content around non-crisis events, or general interest in counseling

related content), I consider three other baseline datasets (ref. Table 3.8).

Baseline Dataset B1 includes announcements from campus officials unassociated with

a crisis (student death) event and without any pointers to counseling or support resources.

E.g., B1 contains posts about non-crisis/non-critical campus events, and appointments or

resignations of officials.

Baseline Dataset B2 consists of campus announcements unassociated with a student

death but points to counseling services. E.g., it includes counseling recommendations that

are either routine, or about socio-political issues and policies (e.g., immigration), sexual

harassment, or violence on campus.

Baseline Dataset B3 includes posts that are campus announcements acknowledging a

student death but without pointers to counseling information.

I acquire these datasets employing similar technique as in the case of CR posts—

identifying keywords iteratively (e.g., “sexual”, “violence”, “immigration”, “policy”,

or “student affairs”), querying and manually inspecting the correctness of returned posts.

Eventually, B1 had 229 posts, B2 had 30 posts, and B3 had 1 post across the 46 subreddits

in which at least one CR post was present.

Next, I use nested queries on the cloud platform, Google BigQuery [256], which hosts

an entire archive of Reddit data (Bagroy et al. 2017), to obtain the usernames of users who

commented on the CR, B1, B2, and B3 posts. I also collect these users’ historical archives
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(or“timelines”) with all posts. Additionally, I collect similar data of 358,871 other users

(378,381,052 timeline posts), who posted on the campus subreddits, outside of the CR, B1,

B2, and B3 posts. As a measure to restrict the corpus among those individuals who belong

to the same campus per subreddit, I further prune the dataset of any users who posted on

more than one campus subreddit. Finally, I identify 842 users and 3,167,266 timeline posts

for the CR dataset, 2,215 users and 6,818,873 timeline posts for the B1 dataset, 321 users

and 1,231,784 timeline posts for B2, and no users in B3.

Measuring Effectiveness of Counseling Recommendations

Now, I present the measures via which I quantify the psychological effects of counseling

recommendations. These measures are based on the three core psychosocial constructs

elucidated in the psychology literature: a) Affective, b) Behavioral, and c) Cognitive at-

tributes [77]. Inspired from the widely adopted “difference in difference” technique in the

causal-inference research [1], I estimate the effects of counseling recommendations in terms

of the changes corresponding to all the psychosocial measures in the Treatment and Control

groups Before and After the date of a specific CR, B1, or B2 post.

Affective Changes

Research has demonstrated affective variability in individuals following crisis events [241,

377, 397]. This work models affect from the perspective of “grief”. Grief is a “response” and

a mix of conflicting feelings and a wide range of strong emotions [325]. When someone dies,

alongside bringing shock, disbelief, and numbness, it leaves friends and relatives feeling

lost, anxious, depressed, or physically unwell [241]. Grief is the process by which I adjust

to the death of someone close [549, 669]. A rich body of literature in psychology, by way of

the “grief work hypothesis” [562] therefore has identified the coping and healing benefits of

grieving [92], which in turn are associated with achieving timely resilience and return to

normalcy and day-to-day activities following crises. Thus examining grief as a measure of
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Table 3.9: Top 30 n-grams used discriminatingly in reddit grief communities. These n-grams
are obtained by ranking their Log Likelihood Ratio (LLR) measures with generic non-mental
health communities (−1 ≤ LLR < 0), tf -idf values are scaled at 10−2.

Word tf-idf Word tf-idf Word tf-idf

thank 14.5 loved 4.65 help 2.82
sorry 13.0 husband 3.54 memories 2.72
loss 8.95 support 3.34 feelings 2.52
remove 6.77 passed 3.25 easier 2.51
hope 6.73 hugs 3.21 miss 2.37
lost 6.00 beautiful 3.13 son 2.36
grief 5.98 sharing 3.15 peace 2.34
death 5.84 glad 3.00 cancer 2.30
died 5.46 suicide 2.96 comfort 1.91
pain 4.94 heart 2.88 sucks 1.79

Anger: .1

Afraid: .2

Lost: .3

Regretful: .2

Pain: .1

Dead: .1

Time: .5

Suicide: .1

Grief: .4

Death: .1

Sad: .5

Funeral: .1

Alone: .3

Pity: .2

Love: .2
Friend: .1
Heart: .1
Wife: .1
Imagine: .5
Improve: .1
Hug: .1
Wish: .2 
Wonder: .3
Inspire: .2
Family: .1
Hope: .6
Thought: .7
Grateful: .4
Month: .2
Kind: 1

Figure 3.11: Weighted distribution of affect categories (ANEW) for grief lexicon on Russel’s
circumplex model. Top ANEW categories and their standardized tf -idf ([0, 1]) are labeled.

psychological change following CR exposure is extremely relevant in this study’s setting.

While prior work has developed methods to identify affective attributes like mood,

emotion, and sentiment [160, 529], presently, there are no computational means to infer

grief from language. Moreover, due to the complexity of grief as an affective construct (note

the definition above), gathering high quality ground truth is challenging. Furthermore, in

assessing psychosocial changes among individuals particularly in response to an environ-

mental stimulus (such as crisis), psychology literature and theories advocate a grounded

59



representation of affect, comprising of not only the commonly used valence (pleasantness

dimension), but also the intensity of affect, known as activation. To address these challenges,

and to obtain a theoretically valid assessment of grief around the sharing of counseling

recommendations, I employ a novel open vocabulary approach of 1) building a grief lexicon;

and 2) mapping the words in the grief lexicon to two affective dimensions, valence and

activation, drawing on the established Russell circumplex model of affect [487].

Building a Grief Lexicon. To build a grief lexicon, I adopt an open-vocabulary based

transfer learning approach. I leverage data from 15 subreddits around the topic of grief, such

as r/grief, r/GriefSupport, or r/bereavement, where people engage in sharing their sorrow

and grieve about the loss of their loved ones. From these subreddits, I obtain over 50K

posts (DG), based on the archives available on Google’s Big Query. Additionally, I obtain a

generic Reddit corpus, DR of posts unrelated to any grief or mental health issues, also used

in prior work [31].

Thereafter, I extract all n-grams (n = 2) from the above two datasets DG and DR, along

with their tf -idf scores. Then, I use Log Likelihood Ratio (LLR) measures to obtain a

ranked list of most distinguishing n-grams across the two corpuses. LLR for an n-gram

is determined by calculating the logarithm (base 2) of the ratio of its two probabilities,

following add-1 smoothing. Based on the LLR measures, when an n-gram is comparably

frequent in both the datasets, its LLR is close to 0; it is < 0, when the n-gram is more

frequent in DG, and > 0 for the opposite. Among the 4,714 n-grams exhibiting negative

LLR, I obtain a list of those 50% of n-grams with the most negative values— here, I use

median as the measure of central tendency. These 2,357 n-grams with a big negative skew in

LLR are most distinctive of DG, and I refer to them as the “Grief Lexicon”, LG. Table 3.9

reports a sample of the top 30 of these n-grams ranked on their tf -idf scores.

Modeling the Affective Dimensions of Grief. To characterize valence and activation

dimensions of words in the grief lexicon based on the circumplex model, I employ the
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widely used word embedding technique to derive latent semantic relatedness between

words [418] and the Affective Norms for English Words (ANEW) lexicon [440]. ANEW is an

affect dictionary, curated after extensive and rigorous psychometric studies, containing a list

of over 1,000 affect categories and their quantified measures of valence and activation. Prior

research has successfully used ANEW to understand expression of mood and affect [160].

For every affect category in ANEW, I obtain its vector representation in a 300 dimen-

sional word-embedding space using the word2vec model (pre-trained on Google News

dataset of ∼100B words). Within the word-vector space, semantic similarity between any

two words can be estimated with cosine similarity, using which I map all the n-grams in

grief lexicon (LG) to the most similar ANEW category (if any, threshold = 0.69 [502]) and

obtain their valence and activation values. Accordingly, 2,357 n-grams from grief lexicon

are mapped to 459 unique ANEW categories. With their valence and activation values as

coordinates on an x-y frame and tf -idf as the magnitudes, I model the grief lexicon in the

two-dimensional circumplex space of affect (see Table 3.11). I find that expressions across

a range of valence and activation values occur frequently in grief, e.g., “kind”, “inspire”,

“love”, “anger”, “sad”, “afraid”, and so on. This aligns with the definition of grief [325], and

justifies this work’s lexically induced open-data strategy of modeling grief in the circumplex

model of affect.

Characterizing Treatment & Control with Grief. With the above grief lexicon and its

2-dimensional affective model, I quantify the affective expression of grief in the Treatment

and Control groups around the date of the CR, B1, or B2 posts in their respective datasets.

Specifically, within each of these groups, I obtain all the n-grams and their tf -idf values

before and after the date of post. Applying the same word-vector based similarity metric

described above, I map these n-grams to the most similar grief word and its valence and

activation value. I compute the mean percentage change of valence and activation of grief in

the Treatment and Control groups.
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Behavioral Changes

Next, I measure psychosocial changes in behavior around the date of counseling recom-

mendation posts. In the psychology, mental health, and crisis literatures, many behaviors

including changes in social functioning and shift of interests can be indicative of an individ-

ual’s changing psychological trajectory. This study is interested in observing the following

changes as effects of exposure to counseling recommendations: Does the user become more

active on Reddit, indicating improved extroversion? Do they participate in more subreddits,

indicating a diversity of interests and interactions? Do they involve themselves in more

discussion threads on Reddit, indicating social engagement? Inspired from prior work [665],

this study answers these questions with three metrics, a) activity, or frequency of posting,

b) interaction diversity, that is, number of unique subreddits they participate in, and c)

interactivity, given by computing the number of comments to post ratio.

Cognitive Changes

Literature in psychology identifies cognitive attributes as another indicator of an individual’s

psychological state [36, 388] —an uptick in wellbeing is known to be associated with

reduced cognitive impairment and improved perceptual processing. Further, psycholinguis-

tics literature has revealed the association of linguistic structural and stylistic patterns in

written communication with cognition [473]. Borrowing from prior work [206], I adopt the

following techniques to examine cognitive changes through linguistic syntax, structure, and

stylistic vocabulary usage:

Coleman-Liau Index (CLI) is a measure of linguistic structure and provides a readability

assessment based on character and word structure within a sentence [482]. This measure

approximates a U.S. grade level required to understand the content, and can be calculated

with the formula: CLI = 0.0588L − 0.296S − 15.8, where L is the average number of

letters per 100 words and S equals the average number of sentences per 100 words.

62



Complexity and Repeatability are syntactic measures that indicate an individual’s cog-

nitive state in the form of planning, execution, and memory, and are in turn, linked to

psychological states [206]. I quantify complexity as the average length of words per sen-

tence, and repeatability as the normalized occurrence of non-unique words.

LIWC. I use LIWC [473] and specifically focus on the normalized occurrences of Cogni-

tion & Perception, Linguistic Style, and Social Context categories.

3.3.2 Results

I start with an overview comparing the differences between the changes in Before and After

samples per dataset, CR, B1, and B2 in Table 3.10. To evaluate statistical significance of

these differences, I conduct Welch’s t-test, and adjust the p-values using False Discovery

Rate (FDR) correction. For most of the measures, the Treatment and Control groups in B1

and B2 show no statistically significant differences in the Before and After periods, but

all other measures barring one (Activity) show significant differences in the Treatment and

Control groups in the CR dataset. This dataset also shows significant changes in magnitude

for the Treatment group, for example – a) for affect, grief expression significantly increases,

b) for behavior, increased social engagement, interactiveness, and diversity of interests, and

c) for cognition, improved cognitive and linguistic processing.

Several studies in psychology and the crisis literature have associated greater expressivity

whether in terms of the positivity or intensity of emotionality, bereavement and grief

expression, or language with an improvement in their psychological wellbeing status [347]. I

situate this study’s results within these studies to observe that compared to baseline scenarios,

counseling recommendations following student deaths are succeeded by effects indicative

of improved wellbeing.
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Table 3.10: Comparing the mean percentage difference between Before and After periods in
the Treatment (Tr) and Control (Ct) groups. Bar lengths represent relative and numbers
denote absolute magnitudes. Blank entries convey no statistical significance.

Data→ CR B1 B2

Measure ↓ ∆Tr ∆Ct ∆Tr ∆Ct ∆Tr ∆Ct

Affective Changes
Grief: Activation 15 -1 – – – –
Grief: Valence 9 -1 – – – –
Behavioral Changes
Activity – – – – – –
Interaction Diversity 9 8 34 27 – –
Interactivity 29 -1 – – – –
Cognitive Changes
Readability 14 11 3 -1 11 11
Complexity 1.3 .7 5 6 .4 .6
Repeatability -3 9 1 1.5 .5 3
Linguistic Style 481 92 – – – –
Cognition & Perception 457 70 – – – –
Social Context 382 49 – – – –

Affective Changes

I examine the affective changes that characterize the Treatment group’s exposure to coun-

seling recommendation. I employ the circumplex representation of grief words, to find that

grief expressions considerably increase (15% for valence, 9% for activation) in Treatment as

compared to a marginal (-1%) decrease in Control (t = 2.68, p < 0.05). Figure 3.12 plots

these changes from the Before to the After period on the same circumplex model, where

larger circles indicate greater differences for those corresponding grief expression. A closer

look at Figure 3.12(a) reveals that higher differences are more prominent in the cases where

a specific grief expression increased in the After period. These expressions which show sig-

nificant changes, belong to all the four quadrants in the circumplex model, such as “friend”,

“hope”, “sad”, and “lost”. In contrast, although drawn on the same scale, large circles are

scarce in Figure 3.12(b), suggesting minimal changes in grief expression in the Control

group. This observation affirms that individuals exposed to counseling recommendations in

the CR dataset become more expressive from an affective perspective, and this affective

expression illustrates grieving as a positive psychological response to the crisis (that is, the
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Figure 3.12: Differences in grief words (from the proposed grief lexicon) in the Treatment
and Control groups, plotted on Russel’s circumplex model of affect. The radius of the circles
are proportional to the mean differences in occurrences of the grief words between the
Before and After periods around the date of CR post.

student death incidents) [473].

Behavioral Changes

The findings suggest that counseling recommendations are associated with no significant

differences in terms of a user’s posting frequency (activity). An alternative interpretation of

this finding backs our causal analysis that, despite all users continuing usual social media

activity before and after the exposure to the CR post, the outcome varies for the Treatment

and Control groups for “every” other measure.

Next, Figure 3.13 shows the behavioral changes in users around the date of sharing of

the CR posts. For interaction diversity, that is, the measure of a user’s engagement across

multiple communities, we find similar changes in the Treatment and Control group, the

former being marginally higher by 1% (t = 4.0, p < 0.05). However for interactivity, a

major increase by 29% occurs in the Treatment cohort, as compared to a small -1% change
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Figure 3.13: Distribution of differences of interactivity (comments to posts ratio) and
interaction diversity (unique subreddits).

in Control (t = 4.1, p < 0.05). These measures support positive social functioning effects

of CR posts, in turn known to have coping benefits following loss of someone close [473].

Cognitive Changes

Readability Within the Treatment group in the CR dataset, Coleman-Liau Index (CLI)

shows a mean increase of 14% in the following exposure to the counseling recommendations.

Although this number is close to the changes in Control group (11%), there statistically

significant differences (t = −81, p < 0.05) between the two groups. Since both groups

of users were statistically matched on their overall linguistic usage, and are alike in their

educational qualification (college students), a comparable overall increase in readability

is unsurprising, especially because this measure typically increases with writing over the

years [482]. To illustrate this observation further, I obtain the probability density function

(with Gaussian kernel) of CLI in the Before and After periods of exposure to CR posts, for

the Treatment and Control cohorts (Figure 3.14). This figure shows that the distribution

of the CLI measure changed considerably for the Treatment group, and no such effect is

observable in the Control group. Specifically, the variance of distribution in Treatment
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Figure 3.14: Distribution of Readability (CLI) in the Treatment (left) and Control groups
(right), Before and After the CR post.

cohort reduced substantially by 90% (σ decreased from 6.1 to 1.9) after CR post exposure.

Increased readability of written speech is known to indicate better control over the train of

thought, better coherence in expressing ideas, and better discourse organization [618]. That

such increases manifest in the Treatment group after exposure to CR posts further indicate

psychological effects around improved wellbeing.

Repeatability and Complexity Figure 3.15 shows the After and Before differences in

linguistic repeatability and complexity in the Treatment and Control groups following

exposure toCR posts. For repeatability, the figure reveals that a greater fraction of Treatment

users show negative and near-zero changes (MdnTreatment = −2 vs. MdnControl = 8), that

is, their linguistic repeatability decreases. In addition to statistically significant differences

(t = 11.3, p < 0.05), while repeatability decreases by 3% for Treatment users, it increases

by 9% for Control users. For complexity, Treatment users demonstrate over 80% increase

compared to the Control users (1.3% vs. 0.7%). Although numerically the change is small,

statistical significance tests (t = 18.6, p < 0.05) show compared to a linguistically matched

Control population, the Treatment users show a greater increase in the usage of longer words.
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Figure 3.15: Distribution of differences in repeatability and complexity in Treatment and
Control groups.

Mental health challenges can manifest in the form of poverty of speech, are accompanied by

a reduction in syntactic complexity, and an impairment in syntactic comprehension [206].

Such tendencies typically result from an overall cognitive deficit, difficulty concentrating,

distraction, or a preference for expressing simpler ideas. As repeatability and complexity

capture such syntactic attributes in Reddit posts, reduction in repeatability and increase in

complexity following CR post exposure are, therefore, indicative of positive psychological

changes in the Treatment cohort.

Cognition and Perception, Linguistic Style, Social Context. Finally, I analyze the nor-

malized occurrences of LIWC categories for linguistic style, cognition, and social context.

Figure 3.16 shows the variability (95% confidence interval) of differences for statistically

significant LIWC categories. All of the categories in the Treatment dataset shows signifi-

cantly higher variability than the Control . These plots lie on the positive y-axis, suggesting

that the levels of cognitive measures increased following exposure to the CR posts.

The cognitive measures, such as “causation”, “cognitive mechanics” and “tentativeness”
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Figure 3.16: Differences in cognitive measures between the Treatment and Control groups
following CR exposure, based on usage of LIWC categories. The vertical lines represents
95% confidence interval range, and the dot shows the mean. Statistical significance is
reported based on Welch t-test. p-values are adjusted using FDR correction (∗p < 0.05, ∗ ∗
0.001 < p < 0.01, ∗ ∗ ∗p < 0.001).

significantly increase after the exposure to CR posts. Per prior work, this indicates an

improvement in an individual’s cognitive functioning [126, 473]. Additionally, greater

usage of “negation”, and words relating to “feel” and “percept” indicate greater perceptual

expressiveness, known to be associated with first-hand accounts of real world happenings,

events, and experiences [82].

Likewise, within linguistic style measures, pronouns (1st, 2nd, and 3rd) and temporal

attributes considerably increase (mean difference=∼5) in the Treatment dataset. Both psy-

cholinguistics and crisis literature note that 1st person and past tense usage relate with nar-

rating personal or collective experiences of upheavals, which seems likely in our case [397].

Prior work also notes higher usage of 2nd person pronouns in the aftermath of crises and

3rd person pronoun use is associated with the language of adaptive and coping related

health benefits following crises. Further, the increased usage of lexical density features such

as “adverbs”, “articles”, and “quantifiers” indicate that Treatment users express via more
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complex narratives [126]—a signal of better psychosocial health [206]. Among the social

context measures, treated users use more “family” and “friends” words. Based on prior

work, this is a known behavior for individuals coping with grief and trauma, and reference

to socialization has therapeutic benefits for an individual’s psychological state [567].

3.3.3 Discussion

This study demonstrates that, with a novel causal framework and unobtrusively gathered

social media data, it is possible to quantify, to what extent exposure to counseling recom-

mendations following a student death on a college campus positively impacts an individual’s

psychological state. Therefore, this study bears the potential to complement existing tech-

niques of assessing the effectiveness of intervention measures deployed after crises. In this

way, this study advances the growing body of research in social media and health, opening

up new avenues of addressing health challenges by employing social media as a mechanism

of supportive mental health and crisis intervention delivery.

The findings suggest statistically significant psychosocial (affective, behavioral, cog-

nitive) effects of exposure to counseling recommendations on the treated population as

compared to a statistically matched control cohort. In assessing these psychosocial effects,

the causal inference framework accounts for behavioral and linguistic covariates across the

treatment and control groups, also eliminating confounds due to temporal variability in their

Reddit activity. Further, this study compares against other baseline scenarios to reveal that

the observed effects were characteristic of the specific context of student death related crises,

instead of other latent factors.

A contribution of this study is a grief lexicon and a transfer learning based methodology

to build it. Drawing on recent advances in computational linguistics research, this study

expands a validated affect dictionary with word embeddings and employed it on public

social media data. This technique can be used in other social media and health research that

involves extracting domain-specific information, but where ground-truth data is limited and
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unlabeled data is plenty.

The findings provide support for the “grief work hypothesis” [562], that situates grief

counseling and therapy as a way for working through loss. The treatment group shows

greater affective expressivity of grief, greater desire for social connectedness and diversity

in interactions, improved cognitive and perceptual processing, and emergent linguistic

and stylistic complexity. Based on psychology and crisis literature around the healing

and coping benefits of grieving [325], the findings indicate that exposure to counseling

recommendations on social media after crisis events, signals effects associated with positive

benefits for one’s psychological state. This provides positive empirical evidence about the

efficacy of post-crisis counseling recommendations on college campuses.

These findings are not only useful in helping gauge whether sharing counseling recom-

mendations on social media are at all effective, but also can support crisis rehabilitation

efforts on college campuses. Campus officials can utilize the outcomes of this study as a way

to identify individuals who are not benefiting from these counseling recommendations. This

can help them employ other proactive intervention measures to support their mental health.

Broadly, this study can inform campus policy decisions around mental health outreach. This

study also sheds light into the role of communication technologies like social media, in

supporting these efforts, both during crises as well as to tackle college student mental health

challenges [196].
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CHAPTER 4

SOCIAL MEDIA STUDIES OF WELLBEING IN WORKPLACES

This chapter discusses social media based modeling approaches of assessing wellbeing in

another form of situated community — workplaces. Employee satisfaction and wellbeing is

of prime interest to both individuals as well as organizations. Researchers have attributed

employee subjective wellbeing as one of the prime determinants of important outcomes that

range across, 1) health and longevity, 2) income, productivity, and organizational behavior,

and 3) individual and social behavior [170].

I conduct two studies motivated address the gaps in state-of-the-art assessments of

workplace wellbeing metrics. These studies bear implications in designing individual- and

organization- facing tools to improve organizational functioning and wellbeing.

In the first study, we empirically study organizational culture by leveraging large-scale

employee-contributed workplace experiences posted on Glassdoor. We examine the lin-

guistic dynamics in public-facing anonymized reviews to describe culture, and develop a

theoretically-grounded rendition of organizational culture as a codebook. We develop a

lexicon to encapsulate culture based on 41 dimensions, and model organizational culture for

company sectors and test its explanatory power in predicting employee performance, where

we found that our computational model of organizational culture significantly explains

individual performance and citizenship behavior, beyond individual intrinsic attributes (eg.,

demographics and personality). This work bears implications in designing individual- and

organization- facing tools to improve organizational functioning.

In the second study, we quantitatively estimate role ambiguity via LinkedIn data. We

compute LinkedIn based Role Ambiguity (LibRA) as a difference in one’s self-described

roles (on LinkedIn) and the company-published job description of the same role. We

measure these differences using word-embeddings on the multiple dimensions of job aspects.
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Aligning with a set of theory-driven hypotheses, we find that greater LibRA is associated

with depleted wellbeing, such as increased heart rate, increased arousal, decreased sleep,

and higher stress. In addition, LibRA is associated with lower job performance such as

decreased organizational citizenship behavior and decreased task performance. We explored

the self-presentation behavior and social computing platform-specific nuances and factors

that need to be accounted if measures like LibRA are to be used in practice.

4.1 Social Media and Multimodal Sensing Data of Workplace Employees

Before we go into the details, we describe participant pool and the dataset of the two studies.

The dataset primarily comes from a large-scale multi-sensor study of workplace behaviors,

called the Tesserae Project [406, 422, 528]. This study, approved by the Institutional Review

Board (IRB) at the researchers’ institutions, recruited 757 participants, who are information

workers in cognitively demanding fields (e.g. engineers, consultants, managers) across

the United States. These participants who were recruited from January 2018 through July

2018, completed an initial set of questionnaires related to demographics, job performance,

personality, intelligence, affect, anxiety, alcohol and tobacco use, exercise, sleep, and stress,

personal attributes, and wellbeing, administrated via psychometrically validated survey

instruments, as well as received daily surveys on a set of these attributes. Participants also

received three sensors: location-tracking Bluetooth beacons; 2) a wearable; 3) a phone

agent—a smartphone application [651]. In addition, some participants authorized collection

of their historical social media data. As compensation, participants either received a series

of staggered stipends totaling up to $750 or they participated in a set of weekly lottery

drawings (multiples of $250 drawings) depending on their employer restrictions. Because

the participants were enrolled over a 6 month period of time (January to July 2018) in a

staggered fashion, data collection varied with a range of time between 59 days and 97 days

(68 days on an average).
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Participant Privacy and Consent. Given the sensitive nature of the data being collected,

participant privacy was a key concern in the study. The participants were provided with an

informed-consent describing each sensing stream, and technical specifications listed what

each device was capturing and how it would be secured and stored. The participants needed to

consent to each sensing stream individually, and they had the provision to clarify their queries

/ concerns about the sensing streams, and they could opt out of any of them [406]. Their

data was de-identified and stored in secured databases and servers which were physically

located in one of the researcher institutions, and had limited access privileges. Participants

were made aware that they could voluntarily drop out via an email at any point during the

year-long study period. Participants could also specifically request their data deletion from

the database.

4.1.1 Self-Reported Data

As mentioned above, the enrollment process consisted of responding to a set of initial

survey questionnaires related to demographics (age, sex, education, type of occupation,

role in the company, and income). Participants were additionally required to answer an

initial ground-truth battery, a set of survey questionnaires that measured their self-reported

assessments of personality traits and executive function. Throughout their study period, they

received daily or periodic validated surveys that recorded their self-reported assessments of

job performance.

Related to psychological traits of the individuals, we collected, 1) Cognitive Ability (or

executive function), as assessed by the Shipley scales of Abstraction (fluid intelligence) and

vocabulary (crystallized intelligence) [578], 2) Personality Traits, the big-five personality

traits as assessed by the Big Five Inventory (BFI-2) scale [589, 614], and 3) Wellbeing, the

general positive and negative affect levels as assessed through the Positive And Negative

Affect (PANAS-X) scale [658], the anxiety level as measured via State Trait Anxiety

Inventory (STAI-Trait scale) [591], and the quality of sleep as measured via the Pittsburg
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Sleep Quality Index (PSQI) scale [182].

Relevant to job performance, we describe two measures that we collected:

Task Performance To assess task performance, we use two scales, IRB (In-Role-Behavior) [663]

and ITP (Individual Task Proficiency) [264]. The IRB scale contains seven items including

questions such as adequately performed assigned duties, failed to perform essential duties,

performed expected tasks, etc., each of which can be rated on a scale of 1 (strongly disagree)

to 7 (strongly agree). On the other hand, the ITP scale contains three items, carried out core

parts of the job well, completed core tasks well using standard procedures, and ensured that

the tasks were completed properly, each of which can be rated on a scale of 1 (very little) to

5 (a great deal). Together, these instruments measure an individual’s ability to adequately

execute their assigned duties, and their proficiency at performing activities that drive an

organization’s technical core [70, 643].

Organizational Citizenship Behavior . We administer the OCB scale to measure organi-

zational citizenship behavior [226]. Organizational citizenship behaviors characterize an

individuals activities that are not typically or formally rewarded by the management, or

voluntary activities outside one’s core responsibilities, but which promote the welfare and

effectiveness of the organization and its members [139, 455]. The survey instrument contains

eight items, each of which asks the participant to self-reflect (yes/no), if they, went out of

their way to be a good employee, were respectful of other people’s needs, displayed loyalty

to my organization, praised or encouraged someone, etc.

Passive Sensing Data for Offline/Physical Activity

To passively sense participants’ behavior and wellbeing measures of participants, the study

deployed three modalities of sensing technologies, as briefly described below.
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Bluetooth Beacons. Participants were provided with two static and two portable Bluetooth

beacons (Gimbal [238]). Static beacons were to be placed at their work and home locations,

and the portable beacons were to be carried either in their backpacks or their wallets.

Combined, these beacons tracked participant presence at home and/or work location, and

also help to assess their commute and time at their work desk.

Wearable. Participants were provided with a fitness band based smartwatch (Garmin

Vivosmart [234]), which they wore throughout the day. The wearable continually tracked

and recorded health measures, such as heart rate variability, stress, and physical activity in

the form of sleep, footsteps, and calories lost.

Smartphone Application. A smartphone application [423, 651] was installed on Partic-

ipant smartphones (Android and iPhones) . This application tracked phone use, lock or

unlock behavior, call durations, and also leveraged their smartphone-based mobile sensors

to track their location (mobility), and physical activity.

4.1.2 Social Media Data

Social media was deployed as a passive sensing modality of behaviors and wellbeing in

Tesserae [406, 528]. The study asked the participants to provide their Facebook and LinkedIn

data, unless they did not consent to do so, or did not have either account, that is consent was

sought only from those participants who had existing Facebook or LinkedIn accounts from

before the study. They could optionally consent to their Instagram, Twitter, GMail (metadata

only), and Google Calendar data. To collect the social media data from those who consented,

we hosted a Python based web application that was developed by our team. This web

application was built upon the Django framework and used an Open Authorization (OAuth)

based data collection strategy. Compared to other alternative data collection strategies

such as downloading and sharing of social media archives, or scraping through webpage

crawlers or smartphone applications, the OAuth protocol provides a more privacy-preserving,
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streamlined, and convenient means of data collection at scale. Additionally, this not only

poses minimal burden to the participants, but also ensures data sharing over a secured

channel without transfer of any personal credentials. The following paragraphs explain our

data collection infrastructure.

4.1.3 Privacy and Ethics

The Tesserae project was approved by the Institutional Review Board at the researchers’

institutions. Given the sensitivity of the data, participant privacy was a key concern. The

participants were provided with informed-consent documents describing the specifics of

what data they were providing, and how would that be stored. The participants needed

to consent to each form of data, and could also clarify concerns and opt out of any data

collection. The data was de-identified and stored in secured databases and servers which

were physically located in the researcher institutions, and had limited access privileges.

4.2 Modeling Organizational Culture with Crowd-Contributed Workplace Experi-

ences

In organizations, certain norms and principles that are believed to optimize the workforce

and maximize efficiency are referred to as organizational culture (OC ) [39, 445]. This

embodies a core value system which affects the development and execution of new ideas,

and the management of unexpected events like crises [107, 444]. While metrics such as

revenue and profit are standard methods to gauge the effectiveness of an organization, the

culture of an organization is both an indicator and a factor to influence its effectiveness [601].

From an employee’s perspective, comprehending organizational culture can help foretell

their loyalty and commitment [444] because community can affect human behavior [102,

149].

Organizational studies have employed a variety of survey instruments to quantify OC ,

but these come with their own challenges [133, 135, 240, 304, 495]. These instruments lack
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temporal granularity and do not scale. Besides, conducting such studies in organizational

settings leads to unique problems because of employee anxieties regarding the confidentiality

of their opinions [30, 431]. Therefore, the workplace context can invite multiple biases, such

as response (or non-response) bias, study demand characteristics, and social desirability

bias [45].

In contrast, workplace review platforms contain self-initiated and anonymous reports [242]

that stand to mitigate many of the biases introduced by survey studies [244]. Glassdoor is

one such platform with publicly posted reviews of workplace experiences. Not only do these

reviews contain objective information like pay, hours and benefits but also the free-form text

that encapsulates various nuances of OC [39, 276]. Through the affordance of descriptive

text, platforms like Glassdoor provide an accessible, scalable and flexible medium to express

cultural and ecological differences [250]. Our work leverages the language used in publicly

visible employee reviews to computationally model OC and augment our understanding of

it. Specifically, this study has the following research aims:

Aim 1. To operationalize OC as a multi-dimensional construct and validate it with language

on Glassdoor.

Aim 2. To computationally model OC of an organizational sector, and evaluate if it explains

employee job performance.

The first research aim strives to build a usable construct of OC , based on Glassdoor data,

that captures various aspects like interpersonal relationships, work values, and structural job

characteristics. Towards this, I use established frameworks from the domain of organizational

psychology [133, 135, 240, 304, 495] to identify job descriptors related to OC and represent

them as word-vectors. Grounded in the literature, this study models organizational culture

in the lexico-semantic space of word embeddings [476], and validates this word embedding

based construct of OC . This produces a codebook of lexical phrases that closely align with

different dimensions of OC .

Next, given a reliable representation of OC I examine if it explains individual per-
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formance [444, 445] by quantifying the OC of companies by sector (e.g., management,

production, or computer). On a ground truth dataset from the Tesserae project [406, 528]

with 341 employees from three companies this study finds that incorporating OC improves

on intrinsic traits (such as demographics and personality) to explain an employee’s task

performance and citizenship behavior. This renders empirical evidence that OC explains

human functioning and exhibits an application of our construct.

4.2.1 Data: Glassdoor

Glassdoor as Employee Experience Platform

For this study, crowd-contributed workplace experiences from Glassdoor serve to validate

the operationalized OC (Aim 1), and to quantify the OC in an employee sector (Aim 2).

Glassdoor is an online platform (launched in 2008), for current and former employees

to write reviews about their workplace experience. As of 2018, there are 57M individual

accounts on this platform, and there are 35M reviews posted for 770K companies [243].

Salient topics in these reviews include work-life balance, management, pay, benefits, growth

opportunities, and colleagues. Glassdoor reviews require ratings and free-form text. Em-

ployees can rate their overall experience on a scale of 1 to 5, and optionally add ratings for

fields like career opportunities, compensation, and senior management. The free-form text

field requires employees to submit descriptions of their workplace experience, in separate

sections for Pros and Cons (Table 4.3). This text describes many salient workplace themes,

such as work-life balance, management, pay, benefits, growth opportunities, facilities, and

interpersonal relationships.

Quality of the Content

In Glassdoor’s published community guidelines and norms for content submission, they state

that they strive to be the most trusted and transparent place for today’s candidate to search

for jobs and research companies [244]. Both contributing content and consuming content
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Table 4.1: 41 Org. descriptors from O*Net to represent the dimensions of OC . The category
column indicates the O*Net category of the descriptors. Categories with ‘*’ are subcategories
within the “Work Context” cateogry. The table in supplementary material provides a detailed
description of job descriptors with the validation source.

Category Organizational Culture Dimensions

Interests Conventional, Enterprising, Social
Work Values Relationships, Support, Achievement, Independence, Recognition, Working Conditions
Wk. Activities Assisting & Caring for Others, Establishing & Maintaining Relationships, Guiding & Motivating Sub-

ordinates, Monitoring & Controlling Resources, Training & Teaching Others, Coaching & Developing
Others, Developing & Building Teams, Resolving Conflicts & Negotiating

Social Skills Instructing, Service Orientation
Struct. Job
Characteristics*

Consequence of Error, Importance of Being Exact, Level of Competition, Work Schedules, Fre-
quency of Decision Making, Freedom to Make Decisions, Structured versus Unstructured Work

Work Styles Concern for Others, Leadership, Social Orientation, Independence, Integrity, Stress Tolerance, Self
Control, Adaptability, Cooperation, Initiative, Achievement

Interpersonal
Relationships*

Frequency of Conflict Situations, Face-to-Face Discussions, Responsibility for Outcomes & Results,
Work w. Group or Team

necessitates an individual login. It only allows individual accounts with permanent, active

email address, or a valid social networking account to submit content, with a maximum

allowance of one review, per employee, per year, per review type [245]. Glassdoor moderation

involves proprietary content-analysis technology as well as human moderators. Any reviews

deemed to be incentivized or coerced, are either not allowed or removed from the platform.

In addition, Glassdoor offers the option to flag content, which is evaluated on a case-by-

case basis. To ensure a non-polarized distribution of reviews, Glassdoor implements a key

incentive policy known as, “give to get” [242]. In this model to get full access to all reviews,

viewers must contribute their own review. This paradigm encourages more neutral opinions

to be recorded and diminishes the biases of self-selected users [108]. The content posted

on Glassdoor remains anonymous, and the moderation strategies ensure that no sort of

individual-identifiable detail is disclosed in the content. However, each review comes tagged

with the reviewer’s role, employment status (current or former), and location of employment.

4.2.2 Aim 1: Operationalizing Organizational Culture

To measure OC through language on Glassdoor reviews, this study first operationalizes it

based on language. I adopt a three-step approach to achieve this: 1) identifying descriptions

of multiple dimensions of OC . 2) transforming the descriptions into word-vectors to capture
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their linguistic and semantic context, so as to represent OC as a collection of these vectors.

and 3) comparing the word-vector based OC construct to filter Glassdoor posts related to

OC and qualitatively investigate the posts’ keywords to establish face-validity.

Identifying Descriptors of Organizational Culture

Language used by a community (or organization) provides a unique lens to interpret its

culture [39, 250]. To understand the extent to which a text expresses OC , I needed an

established ontology of job aspects that are indicative of different OC dimensions. For this,

I obtain job aspect descriptors from the Occupational Information Network (O*Net). O*Net

(onetonline.org) is an online database of occupational information developed under the

sponsorship of the U.S. Department of Labor/Employment and Training Administration

(USDOL/ETA).

These descriptors are motivated by organizational research [257, 293, 610], and are reg-

ularly updated with changes in socio-economical and workforce dynamics. O*Net describes

189 different job descriptors, categorized in 17 sub-categories, which are further grouped

into 8 primary categories. Each of the 189 job descriptors, like Stress Tolerance, Level of

Competition and Independence, is accompanied by a description.

However, all descriptors do not necessarily explain OC . For example, Staffing Organiza-

tional Units and Pace Determined by Speed of Equipment simply describe characteristics of

the job role, not the underlying concept of OC . Therefore I verify which descriptors align

with established frameworks of OC that are widely used in organization research. Two coau-

thors familiar with organizational studies independently inspected each of the 189 descriptors

in O*Net on the basis of four OC instruments, Organization Cultural Inventory [134]),

Organization Culture Profile [445]), Hofstede’s Organization Culture Questionnaire [304],

and Organization Culture Survey [240]). Any discrepancies (n = 23) with respect to the

validity of a job descriptor was resolved by both authors on agreeable themes and concepts.

Overall this procedure had a Cohen’s κ (inter-rater reliability) score of 0.89 This process
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retains 41 descriptors, each of which describes an aspect of OC (see Table 4.1). Also note

that these dimensions are not necessarily mutually exclusive or disjoint [445, 520], and we

could expect a significant overlap in our ensuing analysis. Our domain-driven approach

validates the O*Net descriptors on the basis of multiple different frameworks because no

single conceptual framework describes OC exhaustively [133, 520].

Transforming Descriptors into an OC Construct

While O*Net provides explanations of the 41 descriptors of OC , simply tokenizing the

keywords in these descriptions would not adequately capture the concept of OC . Therefore to

address this challenge, I encapsulate the linguistic and semantic context of these descriptions

by using the concept of word embeddings [211, 544]. This approach represents words as a

vector in a higher dimensional space, where contextually similar words tend to have vectors

that are closer.

I use pre-trained word embeddings in 50-dimensions (GloVe: trained on word–word

co-occurrences in a Wikipedia corpus of 6B tokens [476]). Building on prior work of

representing job aspects in lexico-semantic dimensions [535], I transform the explanations

for each of the 41 descriptors (Table 4.1) into a 50-dimensional word-embedding vector.

These 41 word-embedding vectors essentially characterize multiple dimensions of OC in a

latent semantic space. Collectively, they constitute our operationalized construct of OC .

Validating the Operationalization of OC

While our operationalization of OC captures the information contained in 41 descriptors

(obtained from O*Net and validated from domain assessments of OC ), I need to establish

its validity for practical use. The research team qualitatively inspects the top keywords in

text from our Glassdoor dataset that is relevant to OC.
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Table 4.2: Descriptive stats. of Glassdoor dataset of 92 companies (sourced from top 100 of
Fortune 500). Aggregated values are per company.

Measure Total Mean Stdev.

Reviews 616,605 6,702 8312
Pros Sntncs. 1,386,787 15,073.77 18,408.64
Pros Words 10,747,265 17.42 20.91
Cons Sntncs. 1,715,875 18,650.82 22,786.10
Cons Words 17,150,342 27.81 47.24
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Figure 4.1: Distribution of number of words per review in the Glassdoor dataset of Fortune
100 companies.

Compiling the Glassdoor Dataset

To obtain a diverse but voluminous dataset on Glassdoor, I consult the Fortune 500 list

(ranked by revenue) [222] and obtain the top 100 ranked companies. Since only 8 of these

companies appear in the list of Fortune 100 Best Companies to Work For [223], I believe

the considered sample is not dominated by companies with positively-skewed employee

experiences.

I obtain the public reviews of these organizations using web scraping. For each review,

I collect the textual components (segregated into Pros and Cons) and the reviewer’s em-

ployment information (role and location). Table 4.3 shows three example excerpts in Pros

and Cons components. In sum, I obtain 616, 605 reviews from 92 companies (at the time of

writing 8 companies did not have profiles on the platform) that were posted on Glassdoor
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Figure 4.2: Top n-grams in sentences about OC (excluding lexical variants of keywords).
Darker colors (higher TF-IDF score) indicate greater relative importance within a particular
dimension. Dimensions have been categorized corresponding to the scheme in Table 4.1

Table 4.3: Example paraphrased excerpts in Pros and Cons.

Pros Cons

1) Great teams 2) Talented co-workers 3) Not stressful 4)
Good work-life balance

Most departments offer no flexibility in work schedule. My
manager doesn’t allow me breaks for doctor appointments,
child’s school activities

Good work environment, nice people. Lots of fun working on
cool technology. Location is also superb.

No communication from upper management, Pay is not nearly
as competitive as market salaries.

Friendly, outgoing coworkers. Very health-conscious environ-
ment. Activities are encouraged and supported.

Little recognition for overtime hours, no WFH alternatives even
with bad weather, poor work-life balance

between February 20, 2008 and March 22, 2019, amounting to 10, 747, 265 words in the

Pros segment and 17, 150, 342 words in the Cons segment (ref: Table 4.2 and Figure 4.1).

Note that the content distribution is skewed towards the Cons, but this observation aligns

with activity on other review platforms [318]. Despite the possibility that some of these

reviews could be capricious and circumstantial, this work intends to leverage the ample

volume of data and capture themes at an aggregated level. Additionally, all our computation

normalizes data by volume.
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Table 4.4: The word-vector representation of these sentences that show a cosine similarity
of 0.90 or greater for the corresponding OC dimension. Note that the same sentence can
reflect multiple dimensions.

Example Text OC Dimension

Great training, really genuine and supportive colleagues, great ways to get involved with
interest groups— Proposal writing, research for new industry areas, volunteer activities

Social

In many instances rank was invoked just to prove a point, rather that using data for the same. Importance of Being Exact
The drive to succeed is key, however, it’s not a cut throat competition - people are humble
and people at all levels are interested and willing to develop those at the lower career levels.

Level of Competition

If you have a goal and willing to work on it, senior management will have a genuine interest
in helping you succeed.

Coaching and Developing
Others

A lot of emphasis is on firm activities making it difficult to build relationships as you can only
meet coworkers on Fridays, if they do come.

Establishing and Maintain-
ing Interpersonal Relation-
ships

New recruits are immediately given responsibility, and can take complete charge of their
career development.

Initiative

Lot of group work makes the work easier and more fun. Independence

Filtering Posts about Organizational Culture

First, I derive a word-vector representation of every sentence in the 616,605 posts (∼3M)

from the Glassdoor dataset. I use cosine similarity to measure the similarity between each

sentence’s word-embedding representation and each of the 41 dimensions of OC [34, 536].

Higher cosine similarity indicates that the sentence is semantically similar, or “talks about”

that particular dimension of OC . I retain any sentence that exhibits a similarity of more than

0.90 with any of the OC dimensions. Note that the same sentence may express an opinion

about multiple classes; for example, a post reading “Some staff is able to negotiate to avail

work from home at least one day per week” relates to Work Styles: Social Orientation, Work

Values: Relationships, and Work Values: Independence. Table 4.4 enlists a few paraphrased

examples.

Establishing Face and Construct Validity

Since the sentences that clear the threshold only relate to OC through the latent semantic

space of word-embeddings, I also investigate the actual language used in the content. I obtain

the top 100 keywords (n-grams, n=2,3,4) in all sentences (above the similarity threshold

of 0.90). Then, I compute the TF-IDF score for these keywords across each of the 41 OC

dimensions (similar to [544]). Essentially, this reflects the importance of each keyword in
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the sentences that refer to an aspect of OC . Figure 4.2 visualizes the relative importance of

these keywords (the supplementary document provides a heatmap with all top 100 n-grams).

This study draws upon the validity theory [451], to establish face and construct validity

of contextualizing OC in Glassdoor data by qualitatively examining the importance of the

keywords in the OC dimensions.

The most dominant keyword across several dimensions is work life balance, and its

lexical variants like “life balance”, “work life”. This recurrence could be because notions of

work–life balance has many facets (beyond work-family conflict) such as personal needs,

social needs and team work [463]. For instance, this n-gram is important to the Social

dimension of OC because it characterizes altruistic behaviors and aid of colleagues [303].

Similarly, dimensions like Assisting and Caring for Others, Coaching and Developing

Others, and Training and Teaching others, inherently overlap with the team based aspect of

“work life” [240, 495]. Socially supportive and inclusive workplaces tend to foster better

work–life balance, these key-words co-occur with language referencing social and interper-

sonal dimensions, for example “[Company] tries to ensure work life balance, whether it

works is another story as everyone seems too dedicated.” and “[Company] offers the best

work life balance and true diversity among big firms”.

Certain keywords are relatively more discriminatory between OC dimensions. For in-

stance, “good benefits” is salient in reviews about dimensions like Support and Recognition.

For employees, reward systems within companies garner reciprocal loyalty and increase

the perceived organizational support [198]. For example in this post, “There is effective

communication from senior management along with a good benefits package, cutting-edge

technology, and a culture of integrity and innovation that provides a very satisfying envi-

ronment.”. Another such keyword is “job security”, which is most relevant to experiences

that refer to the Frequency of Conflict Situations dimension. This draws from the fact that

employees in workplaces that have high disagreements require more security and stability of

employment [304]. Other examples of identifiable n-grams are “flexible hours” or “flexible
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work”. These keywords gain maximum importance in text associated with the Face-to-Face

Discussions dimension. Prior research found that teams with fluid hours accommodate

more interactions [97]. Similarly, the terms “long hours” and “long time” are important

in texts related to the Stress Tolerance. Longer working hours not only causes fatigue but

also increases an employee’s exposure to work-related stressors [101, 329, 590], such as

that expressed in, “Client projects can require long hours on short notice, and the general

environment can be very demanding and not forgiving.”

Apart from those discussed above, some of the n-grams correspond to the dimensions

of OC more intuitively. For example, “good people” is most important in texts associated

with Resolving Conflict (Interacting with Others), “senior management” is relevant to

texts about Frequency of Conflict Situations (Interpersonal Relationships), and “team mem-

bers” dominates experiences about the Face-to-Face Discussion dimension (Interpersonal

Relationships). The evidence provided by this study indicates that the OC construct built

from curated O*Net job aspect descriptors can capture the OC -related language used in

Glassdoor reviews.

4.2.3 Aim 2: Modeling OC and examining its Relationship with Job Performance

Prior work in the domain states that organizational culture (OC ) influences individual

performance in the workplace [640, 675]. This motivates this study to apply our 41-D model

OC on posts of an organizational community (such as occupational sector) to explain the

job performance of employees belonging to the same group. Here, I describe a methodology

to computationally model OC with the proposed construct. Then, I evaluate whether the

proposed model can augment our understanding of employee-functioning beyond what is

explained by individual differences.
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Table 4.5: Summary of individual attributes for Aim 2.

Measure Scale Range Mean Stdev. Distribution

Independent Variables
Demographics
Age 21-64 34.15 9.01
Gender Categorical: Male | Female
Job characteristics
Tenure Ordinal: 10 values [<1Y,1Y,..>8Y]
Supervisory Role Categorical - IT | Non IT
Personality Traits (BFI-2)
Extraversion 1-5 1.67-4.91 3.42 0.68
Agreeableness 1-5 2.08-4.91 3.85 0.54
Conscientiousness 1-5 1.92-5.00 3.90 0.65
Neuroticism 1-5 1.00-4.67 2.44 0.75
Openness 1-5 1.17-4.91 3.79 0.60
Executive Function (Shipley)
Crystallized: Abs. 0-25 0-23 17.11 2.97
Fluid: Voc. 0-40 0-40 33.06 3.93

Dependent Variables
Job Performance
IRB 7-49 20-49 44.48 4.57
OCB 20-100 32-100 56.20 10.28

Compiling the Ground-truth Dataset

Towards the Aim 2, I use the groundtruth dataset from Tesserae (section 4.1), and focus

on three major companies, C1, C2, and C3. I collect the Glassdoor reviews of these three

companies. Our groundtruth dataset comes from the Tesserae project [406, 423, 528]. This

provides us the individual difference attributes and job performance of 341 information

workers across 18 unique sectors in three companies C1, C2, and C3 in the U.S. Table 4.5

summarizes the distribution of these measures across the 341 individuals in our groundtruth

dataset. The individual attributes include demographic details such as age, gender, education,

supervisory role (supervisor / non-supervisor), income, and their role in the organization.

This dataset also contains information on personality traits and executive function, both of

which are robust indicators of job performance. The Big Five Inventory (BFI-2) scale [589,

614] measures personality traits across the big five personality traits of openness, conscien-

tiousness, extraversion, agreeableness, and neuroticism. The Shipley scale [578] measures

the executive function in terms of fluid and crystallized intelligence. The dataset provides two

job performance measures the IRB scale [663] (In-Role Behavior) and the OCB scale [226]
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(Organizational Citizenship Behavior).

The dataset classifies participants into 18 unique sectors based on role. The top three

sectors by participant count are “business and financial operations” (115), “computer and

mathematical” (105) and “management” (50), but the dataset also features sectors like “office

and administrative support” and “healthcare practitioner”. This leads to 25 combinations

of company and sector (eg. {C1, Computer and Mathematical}, {C2, Management and

Consultancy}, etc.). Corresponding to the same companies (C1, C2, and C3) and the same

sectors, I obtain 23, 791 reviews on Glassdoor (22,794 for C1, 574 for C2, and 423 for C3). At

an average of 350 reviews per {company, sector} group. These reviews contain 1,654, 134,

and 108 unique roles respectively that mapped to the 18 sectors. For this, I use a semantic

similarity based approach using pre-trained word vectors (trained on 6B tokens on the entire

Wikipedia corpus) [476], and next, two researchers manually verified the mapping, and

edited the sector label wherever necessary.

Modeling and Quantifying OC by Organizational Sector

Since culture is a collectively experienced and manifested, experiences expressed by employ-

ees who share a common basis, such as a team, department or sector in an organization are

considered together. Such an approach facilitates a robust and replicable mechanism to study

OC both between and within organizations — as prior work investigated the phenomenon

on varying levels of organizational granularity [185, 580]. This study is motivated by recent

social media language analyses that use word embeddings [535, 536] to model OC .

First, I collate all the reviews posted per company sectors. Then, using word-embedding

based cosine similarity, I obtain the similarities of every review sentences with each of

the 41 OC dimensions. One cannot simply apply the similarity measure directly as certain

posts could be talking about a dimension either positively or negatively. Consider the

Independence dimension (in Work Styles), which refers to a culture that expects employees

to be unsupervised and self-motivated. For some employees, such a culture can be favorable
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Figure 4.3: Organizational culture as quantified via Glassdoor data per organizational sector
in three companies C1 (top), C2 (middle), and C3 (bottom). The color and intensity of the
cells represent the positivity or negativity in that dimension of organizational culture.

whereas for others it can be challenging. So, I qualify the raw similarity score between a

post with the help of Glassdoor’s Pros and Cons structure. I assign a weight of +1 to those

sentences labeled as Pros and −1 to those sentences labeled as Cons. I obtain the weighted

average of cosine similarities for each dimension. Together, this represents a 41-dimensional

vector of OC , where a value per dimension is equivalent to how positive or negative that

dimension is lexico-semantically spoken about in an organization’s Glassdoor reviews. In

this way, one can describe the OC of any group of employees in terms of a 41-D vector as

long as one can retrieve a corpus of Glassdoor like experiences.

Figure 4.3 shows the distribution organizational culture in 41 OC dimensions in our

dataset. OC varies across sectors both within and between companies. For example, the
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reviews from employees in the sector “business and financial operations” shows contrasting

trends — while the reviews in C1 and C2 talk about OC in a similar way, the reviews of

C3 typically discuss dimensions of OC in Cons. Note that company characteristics of the

scale and varying interests of employee-base could influence these sort of differences in the

employee perspective on culture [171, 580].

Relationship between OC and Job Performance

As human behaviors are affected by the complex interplay between an individual and

the culture they are embedded within [102], this study hypothesizes that its approach of

operationalizing OC can explain an individual’s job performance [444, 445, 675].

Hypothesis. Organizational culture provides significant explanatory power

towards one’s job performance.

I test the hypothesis by predicting job performance — 1) In-Role Behavior (IRB) and 2)

Organizational Citizenship Behavior (OCB). I build a baseline model (Model 1), with indi-

vidual attributes, to predict job performance (Equation Model 1). This is motivated by prior

work that extensively established that individual difference attributes (such as demographics,

personality, and executive function) are strong indicators of job performance [42, 171, 261,

423, 496, 547, 557]. This study also controls for the individual’s organizational sector. Next,

this study builds an experimental model (Model 2), where I incorporate OC alongside

the individual difference variables, and predict the same job performance measures again

(Equation Model 2). Here, I include the 41-D representation of OC based on the Glassdoor

posts of each employee’s {company, sector}. If Model 2 is better (statistically significant) in

explaining the job performance measures than Model 1, then the hypothesis is supported.

JP ∼ gender + age + income + supervisory_role + tenure + exec._function

+ personality + org._sector
(Model 1)
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Table 4.6: Summary statistics of the “best” regression models in Model 1 and Model 2,
where Model 2 includes organizational culture, whereas Model 1 does not. ***: p <0.0001

Measure IRB OCB

Model 1 Model 2 Model 1 Model 2

Algorithm Lasso Ridge Ridge Ridge
R2 0.23*** 0.28*** 0.15*** 0.24***
Pearson’s r 0.43*** 0.45*** 0.32*** 0.41***
SMAPE 3.67 3.65 6.96 6.71

JP ∼ gender + age + income + supervisory_role + tenure + exec._function

+ personality + org._sector + OC[41D]

(Model 2)

Since the job performance measures are continuous, both models are regression esti-

mators. I use three types of linear regression models with regularization, Lasso (L1 regu-

larization), Ridge (L2 regularization), and Elastic Net (L1 and L2 regularization), and two

non-linear regression models, SVM and Random Forest regressors. To tune the parameters

of the models, I use grid search [585]. I use a leave-one-out (loo) 1 methodology to train and

predict over our dataset, that is, this approach iteratively trains models with one held-out

data sample, and predicts on that held-out sample. Finally, all the predicted data points are

collated to obtain the pooled model performance measures — these include Pearson’s corre-

lation and Symmetric Mean Absolute Percentage Error (SMAPE) to evaluate the predictive

accuracy of our models, and R2 to evaluate the model fit (here JP is job performance).

Does Organizational Culture Explain Job Performance?

Model Performance Table 4.6 summarizes the fit and accuracy metrics of Model 1 and

Model 2 for predicting job performance measures (IRB and OCB) (see Figure 4.4 for

scatter plots). First, we observe that the data behaves linearly, as neither SVM regressors

and Random Forest regressors performs better than the linear models. Next, and more
1The rationale to use loo validation over more standard k-fold cross-validation rests on the bias-variance

tradeoff [641]. Given the small size of our dataset (n=341), such an approach leads to unbiased but high-
variance models per fold. This ensures greater stability, robustness, and reduced randomness in sampling [352,
667].
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Figure 4.4: Scatter plots showing true and predicted values per Model 2 of IRB (left) and
OCB (right).

importantly, we find that Model 2 which includes the organizational culture as an independent

variable (or feature), performs better than the Model 1. In the case of IRB, for instance,

Model 2 fits 22% better, and Model 2 predicts with 5% better-pooled correlation, and 0.6%

lower SMAPE. In the case of OCB, the improvement is significantly high, with 60% better

fit, 28% predicted correlation, and 4% lower predicted error compared to the performances

on the job proficiency measures given by Model 1. All these models fit and predict with

statistical significance (p < 0.01).

Model Validity. Despite Model 2 performing better, it is important to reject the possibility

that this is by chance. I aim to reject the null hypothesis that a randomly generated 41-D vec-

tor will perform better than our particular 41-D OC (Model 2). Drawing on permutation test

approaches [17, 537], I run 10,000 permutations of randomly generated OC vectors. I find

that the probability (p-value) of improvement by a randomly generated vector is 0.0002 for

IRB and 0.0001 for OCB. This rejects the null hypothesis and reveals statistical significance

in the observed improvement by including OC based on our quantification. Further, ANOVA

tests to compare Model 1 and Model 2 reveals that Model 2 fits significantly better (p<0.001)

for both IRB (F=974) and OCB (F=310). Therefore, supporting our hypothesis, OC as

computationally modeled using Glassdoor reviews, explains job performance of individuals.
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Interpretation of Results

Table 4.7 reports coefficients of the top 10 OC dimensions (ranked on variable impor-

tance [266]) in Model 2. In-Role Behavior (IRB) assesses an employee’s efficiency in

accomplishing formal task objectives directly pertaining to their appointed job role. The

positive relationship between Recognition and IRB is obvious because proficiency in one’s

assigned role leads to rewards through incentive and upward mobility [638]. Responsibility

for Outcomes and Results is also positively related to IRB because individuals high in

conscientiousness are known to be superior in task performance [32, 154, 372]. Experi-

ences talking about Frequency of Conflict in the Pros more often correspond to higher IRB

scores because conflicts (interpersonal, process-based or task-related) are detrimental to

performance [326].

Organizational Citizenship Behaviors (OCBs) are not related to formal job roles and

typically involve serving the community with extra-role tasks. The Adaptability/Flexibility

dimension negatively associates with OCB because an OC which is more open to variable

work styles triggers reduces face time between employees leading to fewer opportunities

to give back [634]. This also explains why dimensions like Work Schedule and Face to

Face Discussions are positively related to OCB. Also, OCB is based on mutual respect and

reciprocality [142, 635]. This explains the positive relationship with experiences favorably

describing the Establishing and Maintaining Interpersonal Relationships dimension. Addi-

tionally, work environments with high job autonomy elicit more OCBs as employees are

empowered to use their time for altruistic outcomes [55]. The negative relationship with the

Conventional dimension represents being clear of authority and rigidity.

Post-Hoc: Does Language tell us more than Ratings?

Finally, after establishing that quantifying OC with Glassdoor posts of a sector does signifi-

cantly explain individual performance at workplace, I revisit the question, “is quantifying via

language actually effective?” As Glassdoor is a platform that allows individuals to provide
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Table 4.7: Summary of regression coefficients in predicting job performance by Model 2.
This reports top 10 coefficients ranked on variable importance [266].

IRB OCB

Variable Coefficient Variable Coefficient

Freq. of Conflict Situations 0.59 Adaptability/Flexibility -49.92
Service Orientation 6.31 Work Schedules 1.45
Recognition 24.10 Face to Face Discussions 0.36
Independence -9.93 Importance of Being Exact -0.46
Responsibility for outcomes 0.89 Coaching Others -37.43
Working Conditions -8.58 Instructing -36.56
Freq. of Decision Making -10.80 Working with Work Group -0.003
Enterprising 0.96 Conventional -167.92
Monitoring Resources 0.80 Support -72.41
Initiative -9.20 Maintain Relationships 75.35
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Figure 4.5: Pearson’s r of Models predicting individual job performance (M1: Model w/o
OC , MR: Model w/ Org. Sector wise Rating, M2: Model w/ OC via Language)

ratings, I examine if features based on linguistic aspects of the content offer anything more

than raw scores. I build a third model where I only replace OC in Model Equation Model

2 with mean aggregated rating per sector. The Ridge model performs the best in both the

job performance measure predictions. For IRB, this model shows an adjusted R2=0.24,

Pearson’s r=0.43, and SMAPE=3.65.

For OCB, this model shows Adj. R2=0.14, Pearson’s r=0.32, and SMAPE=6.95 — this

model performs only as good as Model 1 (ref: Figure 4.5). So, Glassdoor content when

quantified in the lexico-semantic space bears greater explanatory power compared to a

single numeric rating. This adds credence to our approach of operationalizing o OC as a

multi-dimensional construct [445] instead of relying on a single value.
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4.2.4 Discussion

This study presents a novel methodology to quantitatively model OC through crowd-

contributed employee experiences at workplaces. This study reveals that crowd-contributed

workplace experiences on anonymized review platforms such as Glassdoor explains the

lexico-semantics of OC . That is, the dimensions of organizational culture explain individuals’

perceived outlook and experiences about the company. Further, situating our findings with

the Social Ecological Model [102], this study reinforces concepts in organizational behavior

research by validating that this model can significantly explain individual performance at

the workplace. This study bears implication in understanding workplace experiences, and

in designing empirically guided data-driven technologies to help improve organizational

functioning.

Theoretical and Methodological Implications

Beyond Surveys/Ratings. By leveraging crowd-contributed experiences of workplaces

shared in an unprompted way online, this study mitigates the limitations of traditional

surveys in assessing OC [133, 135, 240, 304, 495]. While traditional surveys that summarize

information into a singular score have its benefits, this compression of information loses

the nuance of the multidimensional nature of OC [489]. This challenge is tackled by

conceptualizing OC on the basis of 41 dimensions and their lexico-semantic space. Another

challenge of traditional surveys at the workplace is their vulnerability to a number of

response biases [33, 45, 631]. In an organizational setup, a participant’s privacy insecurities

of getting exposed to management are amplified [236, 321]. This leads to both social

desirability and non-response bias. Moreover, many individuals with counter-views and

unpopular opinion do not end up participating in such studies to begin with, unevenly

skewing the data. Alternatively, this study uses data from Glassdoor where content is public,

anonymous, and not actively solicited [244]. Although prior experience and personality

can affect public disclosure online, here it is primarily driven by altruism, knowledge, and
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self-efficacy [120, 362, 369]. Surveys are also limited by when and how frequently they are

conducted, whereas OC gradually evolves over time [16]. Unlike surveys, this method can

used in splices of time to empirically trace the cultural evolution of organizations [600].

Organizational Culture as a Linguistic Construct. This study contributes a word-vector

based lexico-semantic similarity approach to model OC , furthering earlier approaches of

modeling OC [10, 215, 439, 464]. The lexico-semantics of language capture the underlying

cultural setup of an organization [39, 250, 276]. Although review platforms have traditionally

been considered as a mechanism to rank, compare, or recommend across entities like com-

panies, our work provides evidence that anonymized (but well-moderated) platforms such

as Glassdoor can be leveraged as a reflection of offline and/or situated communities [47]),

and their norms and practices.

Practical and Design Implications

Interest in the topic of human resource management is still nascent in the HCI, and cross-

disciplinary literature pertaining to workplaces and technology provides several use cases

urging the attention of designers [154, 574]. Along these lines, this study presents opportu-

nities to design for personnel management and organizational decision making. Building

on the notion that OC is associated with job attractiveness [93], I discuss employee- and

employer- facing implications below.

“How is It Like Working in Company X?” Modeling OC can render a normative “signa-

ture” of an organization, which can feature on public online platforms. This can help both

job-seekers and existing employees to reflect on the assumptions and expectations of a work

environment [159, 574]. Additionally, enterprise-based social-networks and collaborative

knowledge bases or “wikis” are already used by employees to learn about and engage in

their organization’s culture [11, 105, 615]. Integrating language-based models of OC on

these platforms can help teams understand the work environment and beliefs and attitudes

within an organization.
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“How Healthy is Our Culture?” From an employer’s perspective, an actionable repre-

sentation of OC , delivered through privacy-preserving, employee-aware technologies and

interfaces, can provide a concrete sense of both individual and collective performance.

OC arguably has a strong influence on employee behavior [39, 445]. This study can help

companies to unpack the atmosphere developing within the workplace through questions

like: “Does our culture support work-life balance? Does our organization enhance employee

creativity? Or is it concentrated only on productivity? Do we celebrate, incentivize, reward,

recognize individual efforts well enough? Do we have enough collaboration? Do employees

enjoy doing that?” Importantly, with an ability to gauge OC , companies can inspect how

well leadership structures model behaviors that embody the company culture, how important

events (e.g., IPOs, product releases), may impact the culture, and what steps might address

issues of unhealthy culture.

Ethical Implications and Considerations

Meaningfulness of Glassdoor Data: Bias and Abuse. Although this method is agnostic to

the nature of the platform, it is undeniable that its credibility and consequences in a practical

deployment hinge on the characteristics of the platform. Glassdoor claims to be equitable

in its moderation and presentation of different reviews irrespective of ratings [244]. Even

though they champion free speech, they avoid platform abuse and illegitimate skewing /

polarization of reviews, they establish strict user limitations. However, guidelines can be

breached and even updated. Even with clear guidelines, users can develop behaviors that

are “within the rules” but may deter the overall meaningfulness of the data. Despite content

balancing policies like “give to get” [242], review sites like Glassdoor can face retaliatory

utilization — where dissatisfied employees are more likely to post [318]. A similar problem

is intentional tarnishing of employers by trolls. Since our work shows the applicability of

data from online platforms to understand offline organizational constructs, it should motivate

stronger policies to avoid misbehavior and presence of “bad actors”.
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Reputation Building and Divergent Views. This study makes us being critical regarding

whether small organizations are as empowered as the ones with large volume of users

and history. Companies with more employee reviews will be robust to diverse opinions

and therefore may find it easy to build and maintain their reputation on public platforms.

This study also recognizes that smaller companies, especially those in early stages, may

find it challenging to build a reputation when it can be easily misconstrued with a few

extreme reviews. In fact, given representation of OC , potential employees could leverage

inappropriate portrayals of smaller companies’ cultures as an extortion tactic to negotiate

pay and benefits [611, 672]. This study encourages online platforms to consider new ways

to protect organizational profiles.

Manipulative Intent to Alter Cultural Perception. Formulating OC ignores the nuances

of user behavior on sites like Glassdoor [183, 582, 682]. Admittedly, these vulnerabilities

can be exploited to harm a company’s reputation, and alternatively organizations may game

the system to boost attractiveness. Crowd-contributed platforms in other spheres like service

and product feedback are rife with problems of “review fraud”, where artificial reviews alter

public perception of products [384, 433]. Similarly, this study can be abused to selectively

manipulate information and jeopardize employee agency, such as by discouraging posts that

with less desirable cultural attributes, and consequentially harm, or even socially alienate

the employees who identify with those attributes.

4.3 Modeling Role Ambiguity with Online Professional Porfolios

The complexities related to an individual’s job role, or the expectations applied to an

individual within and beyond an organization’s boundaries can impact their job satisfac-

tion [639]. In fact, any sort of discrepancy between what an employer expects and what an

employee does at the workplace can impact wellbeing and performance, as employees can

find themselves pulled in various directions as they try to respond to the many statuses they
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hold. According to the “Role Theory”, role conflict, role ambiguity, and role overload are

three aspects of job role that contribute to workplace stress, or the stress that arises if the

demands of an individual’s roles and responsibilities exceed their capacity and capability to

cope [336, 471]. Among the role constructs, role ambiguity has been considered to be the

most significant one, and it is also the focus of the current study [336].

Role ambiguity is broadly considered to include uncertainties about role definition,

expectations, responsibilities, tasks, and behaviors involved in one or more facets of the task

environment [320, 336, 558]. Role ambiguity has both objective and subjective components

— Objective role ambiguity refers to external conditions in the individual’s workplace en-

vironment, whereas subjective role ambiguity relates to the amount of ambiguity that the

individual perceives in their workplace owing to the information gap that they face [336].

Further, role ambiguity leads to consequences related to dissatisfaction, distrust, lack of loy-

alty, turnover, absenteeism, low performance, anxiety-stress, and increased heart rate [639].

There is sufficient evidence demonstrating how role ambiguity negatively affects one’s orga-

nizational life in terms of their physiological, behavioral, psychological, and performance

related measures [335, 558].

Traditionally, role ambiguity is measured using survey instruments that record employee

responses to their perceived clarity of assigned tasks, expectations on the job, expectations of

peers, and if these peers explicitly mention their expectations from the focal employee [509].

In particular, these methods not only suffer from subjective biases [583], but also are

only able to capture the “perceived” component of role ambiguity. Individuals may or

may not be aware that they are working on things beyond their job requirements, such as

when there is an information gap, or if they are investing their effort to gain knowledge

and experience [230, 345]. Thus, it is unclear how useful these measures are [508], and

researchers have argued that the lack of an instrument capable of measuring objective and

perceived facets of ambiguity may have impeded both theory development and application

of research results [76].
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Further, with the development and adoption of technology in several sectors of the

workplace, the landscape of work is evolving at an unprecedented speed. This also demands

continuous skill development [110, 327]; a recent study by McKinsey Global Institute

predicts enormous workforce transitions in the years ahead, estimating by 2030, as many as

375M workers globally will likely need to transition to new occupational categories and learn

new skills [395]. However, there is no defined approach to proactively gauge individuals’

fit with their assigned roles, no guidance for interventions to help them overcome role

ambiguity. An organization that can proactively deal with role ambiguity will benefit from

employees with increased satisfaction, wellbeing, and productivity in general.

This study contributes to the above research gap and advances the theory by introducing

a novel way of measuring role ambiguity. To the best of our knowledge, our study is the

first to empirically and objectively measure role ambiguity via LinkedIn, a professional

social networking platform where career profiles are publicly shared by employees with

self-descriptions of their job titles and role descriptions. Juxtaposing traditional surveys with

modern sensor derived measures of wellbeing, I combine methods adopted from natural

language analysis and statistical modeling to examine the relationship of LinkedIn based

role ambiguity (LibRA) with the wellbeing and job performance of individuals — the two

important facets corresponding to one’s job satisfaction [558].

Aim 1. To measure role ambiguity using unobtrusively obtained LinkedIn data.

Aim 2. To examine the relationship of Linkedin based Role Ambiguity (LibRA) with

individual wellbeing and job performance.

Aim 3. To investigate what factors may contribute to one’s LibRA, relating to their intrinsic

traits, LinkedIn’s platform-specific characteristics, and preferences and goals of use of

professional social networking service.

Towards Aim 1, I model LinkedIn based Role Ambiguity (LibRA) as a lexico-semantic

difference between the job description of an individual’s role as self-portrayed on their

Linkedin profile and what is posted by the company for that particular role. I employ natural
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language analysis to obtain word embeddings of job descriptions along eight facets of job

role, namely abilities, interests, knowledge, skills, work activities, work context, work styles,

and work values [610]. Towards Aim 2, I test for theory-driven hypotheses that examine

the relationship of LibRA with an individual’s 1) wellbeing related measures, namely their

heart rate, arousal, sleep, and work-hours, and 2) job performance related measures, namely

their individual task performance, in-role behavior, and organizational citizenship behavior.

For Aim 3, I reflect back to investigate factors contributing to LibRA. I contextualize

one’s self-presentation behavior on LinkedIn to draw insights into the unobservable and

unaccounted factors, such as an individual’s mindset, job-related motivation, and platform-

related nuances.

4.3.1 Data: LinkedIn

LinkedIn Data

Out of the 757 participants in the study, 529 provided their LinkedIn data. Our work accounts

for those with self-described portfolios and their passively sensed and self-reported wellbeing

and job performance data. Therefore, I filter out “blinded” participants and those without

any self-description in their LinkedIn profile, particularly in their profile and job summary,

leading us to a LinkedIn dataset of 257 individuals — all the ensuing analyses in this study

is limited to these 257 individuals’ data. Corresponding to every participant, the Tesserae

project obtained their self-presented profile and job summary which includes current and

previous jobs. Figure 4.6(c) shows the top job titles in our dataset, and Figure 4.6(d&e) shows

two word-trees of profile summaries on two top representative keywords (“professional”

and “skill”) in our dataset. These word-trees hint how individuals self-present their job

summaries on their LinkedIn profiles; for example, within skills, we find occurrences of both

tangible/technical skills (eg. sap, technology, sales, microsoft office) and intangible/people

skills (eg. leadership, communication, analytical, interpersonal).
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Figure 4.6: Distribution in the dataset on (a) study period per participant, (b) demographic
and job-role based characteristics, (c) word-cloud on the job roles on LinkedIn data,
(d&e) Word tree visualizations on two top-occurring keywords (professional and skills)
in the LinkedIn profile descriptions: These visualizations show content in the form of
co-occurrences of keywords in the dataset. The font size of keywords are proportional to
their occurrence along with surrounding co-occurring keywords. For example, management
profesional, technology professional, professional keywords, analytical skills, technological
skills, etc.
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Self-Reported Data

Figure 4.6b plots the demographic distribution of the participants who provided us LinkedIn

data. The 257 participants with complete LinkedIn data consist of 150 males and 107 females.

The average age of the participants is 35.2 years (stdev. = 9.5). These participants belong

to 60 unique companies, and among these, the top three companies, 103 belong to C1 (a

large-scale multinational firm), 54 belong to C2 (a mid-size product-centric firm), and 17

belong to C3 (a research organization). In terms of job role, the data contains 128 supervisors

and 139 non-supervisors. In job sector, 202 participants belong to Non-IT sector, and 55

participants belong to the IT sector. In terms of tenure, while a majority of the individuals

(53) have been at their current organization for over eight years, 113 individuals have been

at their current organization between three to eight years, and 101 individuals have been at

their current organization for less than three years. For education, most participants have

a college (52%) or master’s degree (35%). In income, the participants are more evenly

distributed, with the majority (64%) of the participants similarly distributed in the 50K-75K,

75K-100K, and more than 150K USD income brackets.

The Tesserae project obtained the participants’ big-five personality traits assessed by

the Big Five Inventory (BFI-2) scale [589, 614], and executive function assessed by the

Shipley scale [104, 559, 578]. For personality traits, the dataset shows a mean openness

of 3.86 (std.=0.54), mean conscientiousness of 3.87 (std.=0.66), mean extraversion of

3.41 (std.=0.67), mean agreeableness of 3.85 (std.=0.55), and mean neuroticism of 2.51

(std.=0.77). For executive function, the dataset shows a mean fluid intelligence of 33.38

(std.=4.18), and mean crystallized intelligence of 16.91 (std.=2.79).

4.3.2 Aim 1: Measuring Role Ambiguity from LinkedIn (LibRA)

Why LinkedIn? LinkedIn is a professional social networking platform (launched in 2003)

that allows individuals to create and publish their professional profiles and describe and their

portfolios. Although LinkedIn is biased towards individuals’ positive self-presentation and
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Figure 4.7: For the same role (Software Development Engineer): (left) Role summary of
an individual as described on LinkedIn, (right) Job description as posted on the company
webpage

self-promotion, the non-anonymity and public-facing nature of the platform also influences

individuals to be less deceptive and more accountable in their profiles [274]. In line with

Goffman’s theory of self-presentation, LinkedIn provides an ideal platform for individuals

to present their “professional” selves to the online audience [249, 633]. Because LinkedIn

is a non-anonymous platform, where individual identity (at least the name) is disclosed, it

somewhat helps promote trust and accountability on the platform [183]. Therefore, it suits

the choice of our dataset where we seek to obtain self-presented portfolios of employees on

their roles and responsibilities at organizations.

Libra: LinkedIn based Role Ambiguity

Defining LibRA. Drawing upon the theoretical definition of role ambiguity, we oper-

ationalize LinkedIn based Role Ambiguity (LibRA) as the quantified differences in the

self-explained roles and responsibilities of the individual against that posted by the company
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for the same role in the organization. For this, we obtain the self-explained job summary

from an individual’s LinkedIn profile. Then, for each role, we obtain the company described

job description by manually conducting search engine queries of the specific role and the

company. These job descriptions are typically posted on job posting websites, such as Glass-

door, LinkedIn, Indeed, and the Google job search portal — where the Google job search

portal collates both exact and nearest matching job descriptions from multiple websites,

including company’s own website, LinkedIn, Glassdoor, Indeed, etc, and sorts them in

relevance to the search query. Figure 4.7 shows an example LinkedIn role description and

company-published role description for the same role of Software Development Engineer

at the same location of the company. Two members of the research team independently

obtained the nearest matching job description per role and per company — there were very

few (<20) instances when the two coauthors obtained different job descriptions, and when

they did, the descriptions were very similar in the two websites, and the more relevant one

was chosen.

Assessing LibRA. Towards computing LibRA, this study represents the above descriptions

of self-reported LinkedIn job descriptions and the company described job descriptions in a

multi-dimensional space of job aspects, for which O*NET is used. O*NET2 is an online

database and job ontology that contains a comprehensive list of jobs and their descriptions,

elaborating on eight notable aspects of job role — abilities, interests, knowledge, skills,

work activities, work context, work styles, work values (see Table 4.8 for brief descriptions).

These aspects are grounded in literature and have been used in prior work to study employee

behavior [610]. For every individual’s role, I obtain their closest matching O*NET roles.

I adopt a semi-automatic approach of edit-distance based match, followed by manual

evaluation and curation by the research team, which is familiar with and are users of

LinkedIn. For example, the closest match of Software Development Engineer is Software

Developers.
2O*Net (onetonline.org) is developed under the sponsorship of the U.S. Department of Labor/Employment

and Training Administration (USDOL/ETA).
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Table 4.8: Job aspect types with their descriptions as obtained from O*Net.

Job Aspect Description

Abilities Enduring attributes of the individual that influence performance.
Interests Preferences for work environments and outcomes.
Knowledge Organized sets of principles and facts applying in general domains.
Skills Developed capacities that facilitate learning or the more rapid acquisition of knowledge.
Work Activities General types of job behaviors occurring on multiples jobs.
Work Context Physical and social factors that influence the nature of work.
Work Styles Personal characteristics that can affect how well someone performs a job.
Work Values Global aspects of work that are independent to a person’s satisfaction.

Figure 4.8: Aspect-wise LibRA for a random set of 50 participants in two companies C1

(above) and C2 (below). These visualizations are an example comparison of LibRA within-
and across- company employees

Then, drawing on natural language analysis methods, I use word-embeddings, partic-

ularly pre-trained GloVe vectors [476, 540] to project the role descriptions of individuals

and companies in a 50-dimensional word-vector space, so as to obtain rich lexico-semantic

context surrounding the hand-curated job descriptors above [535]. I use cosine similarities

to obtain two vector projections in the eight-dimensional job aspect space per individual i—

1) one that is obtained from their LinkedIn summary (vi1) and 2) one that is obtained from

the same role’s company description (vi2). Then, the overall LibRA is measured as the eu-

clidean distance between vi1 and vi2. To obtain the aspect-wise LibRA of an individual as the

absolute difference per dimension of vi1 and vi2. For instance, Figure 4.8 show heatmaps of

multi-dimensional role ambiguity of randomly selected 50 individuals from two companies,

C1 and C2 in our dataset. We find that some individuals show high or low role ambiguity

across the aspects, but most individuals show high role ambiguity in one or more dimensions.

While exploring the differences across multi-dimensional role ambiguity constructs remain
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a future research goal, such multi-dimensional role ambiguity [581] can benefit various

stakeholders (employers or employees) through guided intervention to minimize their role

ambiguity. This kind of interface is additionally inspired from prior HCI work aimed at

facilitating employee satisfaction [159, 573].

Evaluating the Validity of LibRA Against Gold Standard

After defining and proposing a method to measure LibRA using LinkedIn data of individuals,

I examine the validity of the measure. That is, I examine if the LibRA measure gets at least

close to what the Role theory identifies as “role ambiguity”. For this, drawing on modern

validity theory [145], I compare the LibRA of the individuals against a gold standard validated

survey on measuring role ambiguity. The Michigan Assessment of Organization survey

instrument measures an individual’s role ambiguity, role conflict, and role overload [435].

Corresponding to role ambiguity, the scale asks the participants to rate the four statements,

“Most of the times I know what I have to do on my job”, “On my job I know exactly what

is expected of me”, “I can usually predict what others will expect of me on my job”, and

“Most of the time, people make it clear what others expect of me”, a 7-point Likert scale

ranging from “Strongly Agree” to “Strongly Disagree”.

I randomly sample a subset of 77 participants from our entire participant pool to answer

the Michigan Assessment of Organization survey [435]. Correlating the survey-based role

ambiguity with LibRA, I find Spearman’s3 correlation coefficient to be 0.22 (p < 0.05).

Consequently, a statistically significant correlation does imply criterion validity, and

hints at construct validity in our claim that LibRA does contain information that is also

captured by gold standard, validated survey instruments on role ambiguity. However, I also

acknowledge that the magnitude of correlation is moderate, which could be attributed to the

differences in the measures (one is “perceived”, and other is objectively measured).

3Because the survey instrument on role ambiguity and our measure of LibRA measure role ambiguity in
different scale and order, it makes sense to correlate the ranked (or relative) values rather than the raw values
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Table 4.9: Summary of covariates used in the regression models.

Covariates Value Type Values / Distribution

Demographic Characteristics
Gender Categorical Male | Female
Age Continuous Range (22:63), Mean = 35.24, Std. = 9.46
Education Level Ordinal 4 values [College, Grad., Master’s, Doctoral]

Job-Related Characteristics
Income Ordinal 7 values [<$25K, $25-50K, ... , >150K]
Tenure Ordinal 10 values [<1 Y, 1Y, 2Y, ... 8Y, >8Y]
Supervisory Role Boolean Supervisor | Non-Supervisor
Job Type Boolean IT | Non-IT

Executive Function (Shipley scale)
Fluid (Abstraction) Continuous Range (5:23), Mean = 16.91, Std. = 2.78
Crystallized (Vocabulary) Continuous Range (0.0:40.0), Mean = 33.38, Std. = 4.18

Personality Trait (BFI scale)
Openness Continuous Range (1.7:5.0), Mean = 3.86, Std. = 0.54
Conscientiousness Continuous Range (1.7:5.0), Mean = 3.87, Std. = 0.66
Extraversion Continuous Range (1.7:5.0), Mean = 3.41, Std. = 0.67
Agreeableness Continuous Range (2.1:5.0), Mean = 3.85, Std. = 0.56
Neuroticism Continuous Range (1.1:4.7), Mean = 2.51, Std. = 0.77

4.3.3 Aim 2: Examining Relationship of LibRA with Wellbeing and Performance

Theoretical Underpinnings and Hypotheses

Role Ambiguity and Wellbeing. While there is no single conceptualization of wellbeing,

the broad categories that wellbeing encompasses are physiological, psychological and be-

havioral aspects [335, 558]. Physiological indicators include factors such as blood pressure,

heart conditions, and general physical health. Psychological indicators include affect, frus-

tration, anxiety, stress, and arousal. Behavioral aspects include those that an employee has a

choice to make, like the time spent at work, the time taken for breaks during work, mobility

to another employment (turnover), hours of sleep, etc.

Within the scope of our dataset, I study the relationship of LibRA with one’s physiological

measures (heart rate and sleep [99, 113]), psychological measures (stressful arousal [605]),

and behavior at the workplace (time spent at desk and time spent at workplace [679]).

Specifically, I test for the following hypotheses in the relationship of LibRA with wellbeing

attributes.

H1. Greater role ambiguity is associated with increased heart rate.
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H2. Greater role ambiguity is associated with increased arousal.

H3. Greater role ambiguity is associated with decreased sleep.

H4. Greater role ambiguity is associated with reduced work-hours.

Role Ambiguity and Job Performance. Role ambiguity consists of the uncertainty re-

garding tasks that an employee needs to perform as part of their job role in the company.

An employee with greater clarity will be able to better perform the required tasks. One

plausible mechanism that can explain this higher performance is the intrinsic motivation of

an employee [387, 509]. Lower role ambiguity or higher role clarity makes it easier to meet

the expectations, the employee more motivated and such intrinsically motivated employees

perform better and more efficient [229, 231]. Employees with higher job satisfaction are

intrinsically motivated and strive harder at work which contributes to their performance.

Thereby, the exposure to role stressors (such as role ambiguity) affects an individual’s

capacity to control their work environment, which in turn adversely affects their ability to

function effectively [365, 410].

Within the scope of our dataset, I study the relationship of LibRA with two dimensions

of job performance [519, 643, 663] — 1) task performance and 2) organizational citizenship

behavior. Prior literature in organizational behavior dominantly uses these subjective mea-

sures and I rely on the extant literature for the validity of these measures [643]. I test the

following hypotheses for LibRA with respect to job performance.

H5. Greater role ambiguity is associated with decreased task performance.

H6. Greater role ambiguity is associated with decreased organizational citizenship.

Testing Hypotheses and Convergent Validity of LibRA

To establish the convergent validity of LibRA, I adopt a theory-driven approach to outline

hypotheses on the relationship of LibRA with job performance and wellbeing. For this,

I study the relationship (and association) of LibRA with the passively sensed wellbeing
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measures, and the validated survey-based job proficiency measures. This study uses linear

regression models, which are known to provide easily interpretable associations in cases of

conditionally monotone relationships with the outcome variable [158]. For every wellbeing

or performance measure M, I build linear regression models with M as the dependent

variable, and LibRA as an independent variable, controlled for demographic, personality,

and executive function measures per individual (see Equation Equation 4.1). Our choice

and inclusion of these covariates are motivated from prior literature [42, 72, 671]. Table 4.9

summarizes these covariates in their kind, and the values attained. For all the regression

models, I use variance inflation factor (VIF) to eliminate multicollinearity of covariates (if

any) [446]. For the ease of comparing the relative importance of the predictive variables in

the regression models, I standardize the variables such that they have a mean of zero and

standard deviation of one.

M∼ gender + age + education_level + income + supervisory_role + tenure + job_type

+ executive_function + personality_trait + LibRA

(4.1)

Testing H1: Greater role ambiguity is associated with greater heart rate High heart

rate is associated with an increase in stress [56, 296]. Caplan and Jones found that greater

role ambiguity is associated with increased heart rate, which is identified as a major predictor

of coronary heart rate [56, 99]. I obtain the heart rate measures of the participants through

the wearable sensor (see section 4.1, Figure 4.9 (a)). I fit a linear regression model with

the average heart rate (HR) in the study period per individual. Given that exercise and

physical activity has an association with heart rate [254], in addition to the covariates

listed in Table 4.9, I control for the physical activity per participant. The regression model

reveals a positive standardized coefficient (0.10) with statistical significance for LibRA

( Table 4.10, Figure 4.10 (a)). This observation supports our Hypothesis H1.
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(a) Heart Rate (b) SNS Stressful Arousal (c) SNS Rest Arousal

(d) Sleep (e) Duration at Work (f) Duration at Desk

Figure 4.9: Distribution of wellbeing measures as inferred via passive sensors.

Testing H2 Greater role ambiguity is associated with greater stressful arousal Arousal

is a physiological response that is related to one’s heart rate variability, and is associated with

stress, fatigue, and anxiety [176, 296]. These wellbeing measures are known to exacerbate in

the presence of role ambiguity [4, 99]. In our project, the wearable sensor allows us to obtain

participant arousal, particularly their Sympathetic Nervous System (SNS) arousal measures

in a continuous fashion. In particular, for every individual, it scores the arousal level from

restful to stressful on a scale of 1-100 at every three-minute granularity (Figure 4.9 (b&c)).

Here, the restful duration is when an individual relaxes or recovers from stress [234]. I

build two separate regression models, one with median duration of high stressful arousal

(75-100), and one with median duration of restful arousal (1-25) per individual. We find that

LibRA shows a positive standardized coefficient (0.42) in the former model, and a negative

standardized coefficient (-0.22) in the latter model (Table 4.10, Figure 4.10 (b&c)). This
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suggests that individuals with high LibRA are more likely to show higher stressful arousal,

and lower restful arousal. Therefore, our observations support H2.

Testing H3: Greater role ambiguity is associated with decreased sleep Sleep is an

important attribute in an individual’s wellbeing, and it reduces the negative impact of stress

as well as improving overall health [67]. Given that stress reduces sleep, and sleep reduces

stress, a stressed person is likely to sleep less [636]. If role ambiguity is stressful, this study

hypothesizes that high role ambiguity will correspond with reduced sleep duration. The

wearable sensor allows us to obtain participant sleep durations (see Figure 4.9 (d)). I build a

linear regression model with median duration of sleep per individual. We find that LibRA

shows a negative standardized coefficient (-0.16) with statistical significance (Table 4.10,

Figure 4.10 (d)). Therefore, H3 is supported in our dataset.

Testing H4: Greater role ambiguity is associated with decreased work hours Role am-

biguity is known to affect an individual’s workplace behavior [471]. The bluetooth beacons

sense if a participant is at work, at home, or commute, and within work; it additionally cap-

tures the duration the participant is at- and away from- desk. I build two regression models,

one with the duration at work, and one with the duration at desk, when at work (this model

additionally controlled for duration at work). Here, we find that both of these dependent vari-

ables show heavy-tailed distributions (see Figure 4.9 (e&f). For both of these distributions,

Chi-squared tests could not reject the null hypotheses that they were significantly different

from a Poisson distribution (p > 0.05). Therefore, instead of using purely linear regression

models, I build negative binomial regression models [300], ones that essentially regress

the logarithm of the dependent variables with the independent variables [300]. Negative

binomial regression is preferred over poisson regression because we find the presence of

over-dispersion in the distribution of both duration at work and duration at desk ( Figure 4.9

(e&f)) [151]). LibRA shows a negative standardized coefficient in both the models (-0.41

for duration at work, and -0.12 for duration at desk, Table 4.10, Figure 4.10 (e&f)). This
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Table 4.10: Summary of standardized coefficients of regression models of wellbeing.
Covariates Std. Coeff. Covariates Std. Coeff. Covariates Std. Coeff.

H1 (Heart Rate) H2 (Arousal)
M = Heart Rate, R2 = 0.16* M = Stressful Duration, R2 = 0.65* M = Restful Duration, R2 = 0.47**

Exercise Duration 0.53** Age 0.69** Job: Non-IT 0.31*
Shipley: Abs. -0.81* Edu: Grad. School -0.24* LibRA -0.22***
Agreeableness 0.91* Tenure: 4 -1.59*
Conscientiousness -0.78* LibRA 0.42***
LibRA 0.10*

H3 (Sleep) H4 (Work-Hours)
M = Sleep Duration, R2 = 0.19*** M = Duration at Work M = Duration at Desk

Income: $50K-75K 0.21* Edu.: College 0.23*** Duration at Work 0.18*
Agreeableness -0.14* Edu.: Grad. School 0.21*** Edu: College -0.09
Tenure: 7 Yrs. -1.74* Income: $50K-75K 0.14*** Edu: Grad. -0.04
Job: Non-IT 0.15** Income: $100K-125K -0.18*** Edu: Master’s 0.04
LibRA -0.16*** Shipley: Abs. 0.01*** Income: $100K-125K 0.09*

Extraversion 0.09*** Income: $125K-150K 0.08*
Conscientiousness 0.05*** Tenure: <1 Yr. -0.18***
Neuroticism 0.12** Tenure: 2 Yrs. 0.18***
Tenure: 6 Yrs. -0.16*** Tenure: 3 Yrs. 0.26***
Tenure: 7 Yrs. -0.15*** Tenure: 4 Yrs. 0.09***
Tenure: 8 Yrs. -0.31*** Tenure: 8 Yrs. 0.15***
Job: Non-IT 0.20*** Job: Non-IT -0.03*
LibRA -0.41*** LibRA -0.12**

suggests that individuals with high LibRA are not only less likely to spend time at work, but

also less likely to spend time at desk when at work. These observations support H4.

Testing H5: Greater role ambiguity is associated with lower task performance Two

survey scales of In-Role Behavior (IRB) and Individual Task Performance (ITP) three times

a week were administered, to periodically obtain the self-assessed task performance of the

participants (see Section section 4.1, Figure 4.11 (a&b)). For both these measures, I build

two linear regression models each — one that uses an aggregated (median) value of task

performance, and one that uses a change in task performance over the duration of the study.

We find that LibRA shows a negative association with both aggregated ITP (-0.33) and

change in ITP (-0.20) per individual. Similarly, LibRA also shows a negative association

with both aggregated IRB (-0.29) and change in IRB (-0.20) per individual (Table 4.11,

Fig.Figure 4.12 (a&b, d&e)). Together, these observations suggest that individuals with

higher LibRA not only have a greater likelihood of performing badly at work, but also their

performance worsens over time. Therefore, our observations support H5.
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(a) Heart Rate (b) SNS Stressful Arousal (c) SNS Restful Arousal

(d) Sleep (e) Duration at Work (f) Duration at Desk

Figure 4.10: Scatter plots of demonstrating the distribution of wellbeing attributes against
LibRA. LibRA is positively associated with heart rate, stressful arousal, and negatively
associated with restful arousal, sleep, duration at work, and duration at desk. In sum,
increase in LibRA is associated with depleted wellbeing.

Testing H6: Greater role ambiguity is associated with lower organizational citizenship

behavior We administered the Organizational Citizenship Behavior (OCB) scale three

times a week, to periodically obtain the self-assessed organizational citizenship behavior

of the participants (Figure 4.11 (c)). Like the above, I build two linear regression models

— one that uses an aggregated (median) value of OCB, and one that uses a change in OCB

over the duration of the study. We find that LibRA shows a negative association with both

(a) ITP (b) IRB (c) OCB

Figure 4.11: Distribution of Performance measures via job performance surveys.
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Table 4.11: Summary of standardized coefficients of regression models of task performance.

Covariates Std. Coeff. Covariates Std. Coeff. Covariates Std. Coeff.

H5 (Task Performance) H6 (Org. Citizenship Behavior)
M = ITP, R2 = 0.29*** M = IRB, R2 = 0.29*** M = OCB, R2 = 0.24***
Income: L -0.38* Openness 0.13** Supervisor: Yes 0.24***
Income: Q 0.40** Consc. 1.13* Extraversion 0.34***
Openness 1.07* Tenure: 8 0.17* Tenure: 6 -0.14*
Consc. 1.30*** LibRA -0.29* Tenure: 7 -0.20**
Tenure: 6 -0.15* LibRA -0.10**
LibRA -0.33***
M = ∆ ITP, R2 = 0.13* M = ∆ IRB, R2 = 0.17*** M = ∆ OCB, R2 = 0.22*
Extraversion 0.69* Openness 0.91** Supervisor: Yes -0.26*
Consc. -1.37*** Consc. -0.84* Agreeableness -1.80*
LibRA -0.20* Tenure: 7 -0.19* Tenure: 5 0.21*

Tenure: 8 -0.26** LibRA -0.25***
Tenure: 9 -0.18**
LibRA -0.20**

aggregated OCB and change in OCB per individual (Table 4.11, Figure 4.12 (c&f)). These

observations suggest that individuals with higher LibRA show a greater likelihood of poorer

OCB, which also worsens over time — a tendency associated with being disinclined to be

altruistic or help colleagues at workplace. Therefore, our observations support H6.

4.3.4 Investigating the Factors Affecting LibRA

This final section studies the factors that contribute to the LinkedIn based role ambigu-

ity (LibRA) assessment. Specifically, I investigate the extent to which appropriating data

shared online (on a professional social networking service, LinkedIn) may bring forth new

dimensions to consider while employing LibRA for practical use, and what might contribute

to observed differences in LibRA. To do this, I draw from various literature to situate our

observations.

First, I seek to quantitatively study the relationship of LibRA with observable and intrinsic

attributes of an individual. Using the same covariates as in Table 4.9, I fit one’s LibRA as

the dependent variable in a series of statistical models. Our rationale to study this rests on

prior work that found demographic and intrinsic traits affecting self-disclosure behavior on

LinkedIn, which may lead to differences in LibRA [282, 619, 623, 642]. I build multiple

regression models (both linear and non-linear), but find no significance in the relationship

(p > 0.1) in either the regression fit or the variable coefficients. ANOVA F -test per covariate
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(a) ITP (b) IRB (c) OCB

(d) ∆ ITP (e) ∆ IRB (f) ∆ OCB

Figure 4.12: Scatter plots of demonstrating the distribution of job performance measures
against LibRA. LibRA is negatively associated with ITP, IRB, OCB, ∆ ITP, ∆ IRB, and ∆
OCB. In sum, an increase in LibRA is associated with both decreased job performance as
well as reduced job performance over time.

and LibRA reinforced our confidence in this finding that there is no significant relationship

in the variability of observable traits influencing LibRA. This aligns with previous literature

that claims role ambiguity is independent of individual traits, rather than an outcome of

a number of factors such as mentor-mentee relationship, working alliance, organizational

structure, and organizational communication [361]. Nevertheless, because LibRA is inferred

from social media data, specifically LinkedIn, numerous mediators can confound the self-

presentation behavior of an individual on LinkedIn (even after controlling for their intrinsic

demographic and personality traits). This study delves deeper into this consideration based

on a qualitative examination of a sample of our dataset as described below.

I intend to compare and study the self-presentation behavior, accounting for the between-

individual differences in self-reported and assessed traits of demographic, personality,

executive function, and work role-related characteristics. Therefore, with these characteris-

tics as covariates (see Table 4.9), I draw on matching techniques from causal inference [317,

544] to match individuals using Mahalanobis Distance Matching [270].
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This study separately matches pairs of individuals who belong to IT roles, and who

belong to non-IT roles. Figure 4.13 plots the pair-wise Mahalanobis distances and the

absolute differences in their role ambiguities. We focus on those individuals (shaded region

in Figure 4.13) who are similar in their individual attributes but show high differences in

their LibRA — this study samples the top 10th percentile of pairs of individuals in IT and

non-IT each.

Next, among the individuals in the above sample, the research team manually looks at

the (public) LinkedIn job and profile descriptions. While these individuals are very similar

in their personality, demographic traits, and their role in the company (because of matching),

in terms of self-presentation behavior on LinkedIn, we find differences in their style of

writing (also highlighted in the Figure 4.13 examples). For example, one writes an extremely

short description compared to their matched other, who writes a longer description with

much more detail. Another example includes only technical-skills or the tasks that they are

assigned at work (e.g., Java, business development), compared to their matched other, who

additionally describes their non-technical and people skills and abilities (e.g., accomplished,

dynamic). Given the affordances and the uniqueness of LinkedIn as a professional social

networking platform, I deduce a few plausible reasons that can potentially influence the

virtual self-presentation of the individuals, and in turn, lead to varied inferred role ambiguity.

I discuss these factors, which are not disjointed and could be inter-related:

Individuals’ Organizational Behavior. Individuals who are looking for newer jobs or

endeavors possibly write a more detailed portfolio on their LinkedIn profiles, whereas indi-

viduals who are generally “settled” are not as active in providing detailed descriptions [582].

This could also be a different type of job than what they are currently involved at altogether

as well. In other words, the settled people may have different jobs currently compared

to they were hired, e.g., through promotion or lateral moves within the company. An al-

ternative conjecture could also be that, only a few individuals write and “highlight” their

work experience, rather than describing their responsibilities and tasks at the workplace, for
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Figure 4.13: Pair-wise differences in individual attributes and corresponding differences in
LibRA. Example excerpts show differences in LinkedIn descriptions of pairs of individuals
with very similar individual attributes (low differences), but large differences in LibRA.

example, “I have 25 years of Health Care Provider experience in revenue cycle selling and

managing outsourced health care accounts, receivable solutions [..]”. We find individuals

who describe their role with people skills and proficiencies beyond their tasks, such as “I

can effectively cope with change, shift gears comfortably, and bring a point of view to the

leadership”, and those who describe their attitude towards initiativeness, “I am always

willing to help especially if there is a problem to be solved, and my behavior is a mix

of light-heartedness and a drive to put into practice everything I have learned.”. These

could be individuals who exhibit proactive behaviors in the organizations [143]: they show

anticipatory, change-oriented and self-initiated behavior in situations and tend to act in

advance of a future situation, rather than just react later. This may also indicate that although

these individuals have high role ambiguity, they show desirable individual characteristics

(proactive behavior and leadership traits) in organizations [46, 143]. Exploring these aspects

further is of future research interest.

Individual-Intrinsic Factors Prior research has observed that people may self-promote

and appear honest and less deceptive on their professional social networking profiles [274,
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633]. However, the degree and the way in which they self-present themselves can vary.

Given the context of professional choices and career development, we can look at it from

the perspective of growth versus fixed mindset [192]. Those with “fixed mindset” believe

their abilities are innate, whereas the ones with “growth mindset” believe that abilities can

be acquired via investing effort and study. For instance, an individual describes themself

as, “a motivated and hardworking professional looking to improve my skills and abilities.”

Although mindset and personality traits are somewhat related, mindset can reshape over

time and through interactions [12]. Complementary research directions have also coined

“benefit mindset”, and “global mindset”, “productive mindset”, and “defensive mindset”,

all illustrating a variety of intrinsic behaviors of individuals that contribute to their skill

development, proficiency, and self-presentation in organizations [86, 281]. The similar traits

likely permeate into online self-promotion practices on LinkedIn.

Job-Related Factors Literature has demonstrated the importance of job titles in organi-

zations [627]. LibRA assessments of an individual are derived from the job titles of the

individuals. However, if the job titles themselves are ambiguous then that inherently adds

ambiguity to the role of the individual. In fact, we find pairs of individuals where one is an

“Associate”, while the other is a “Specialist” — both of these titles are pretty generic, and do

not convey much information to the employees. In contrast, the fact that recently companies

are coming up with “cool” job titles (e.g., ninja) to gain visibility and distinctiveness can

add other complexities to role ambiguity [551]. As Utz and Breuer recently noted that

one’s career orientation, type of role or organizational sector, influence their behavior or

use of LinkedIn— for example some sectors may require more referrals or information

than others, thereby implicitly demanding greater activity from the individuals [629, 685].

Additionally, some individuals may be working on confidential projects and they are bound

by nondisclosure agreements. Further, the role in a company and size of a company can

influence the self-description behavior of individuals [685]. That is, even with common and
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similar job titles, individuals at large enterprises may not feel the need to describe their role

in as much as detail as those at startups and mid-size organizations [402]. Compounding

this difference in company size, some companies may encourage the use of LinkedIn among

employees to improve the image of the company, or may even render the platform as a

mandatory in-company communication tool, thereby influencing the LinkedIn use behavior

of their employees [633].

Audience, Privacy, and Platform Factors Finally, the familiarity or the use of LinkedIn

as a platform may vary across individuals. Two participants in our sample described what

their company does, rather than what their role is, such as, “[Company] specializes in [..]

and works with companies that offer [..] service. [Company] has over 40 years of experience

in the industry and operates groups of 10 to 1000 people [..].” In addition, LinkedIn is a

professional social networking platform that also functions as a marketplace for job seekers.

Individuals tend to share credible information because they have a conceptualization of an

“invisible audience” [57], and since LinkedIn is a public space, they do not want to appear as

dishonest [274]. At the same time, as discussed in Ghoshray’s work, employee surveillance

and employee’s subjective expectation of privacy shares a competing relationship, and the

sheer perception of being “surveilled” can influence one’s self-disclosure behavior on the

platform [236, 321, 623]. Further, employee’s own mental models about LinkedIn privacy

might be a factor behind what they share [100].

In summary, LibRA is based on self-presentation on a professional social media site,

Linkedin. As such, it is subject to variability in self-presentation and motivation found

in the population, such as differences in organizational behavior, differences in job status

(e.g. looking for a new job vs remaining established), differences in values (e.g. “fixed” vs

“growth” mindset), differences in the context of the job (e.g. a software engineer at a small

firm vs a large firm) and the assigned job title, and differences in how individuals perceive

the positives and drawbacks of their professional information in a publicly accessible space.
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These differences should be considered when applying LibRA in assessing role ambiguity.

4.3.5 Discussion

Our findings align with the propositions put forth by role theory, that greater LibRA measure

is associated with factors that are related to depleted wellbeing such as, increased heart

rate, increased arousal, decreased sleep, and decreased work hours, and is associated with

lower job performance such as decreased task performance and decreased organizational

citizenship behavior. Our work bears theoretical, practical, and design implications that

surround this new measure of role ambiguity assessed from people’s professional social

networking data, from the perspective of employees, organizations, and social computing

platforms. Our research contributes to the growing interest on the topic of “Future of Work

at the Human-Technology Frontier”4, wherein this study presents new technology-facilitated

means to improve workplace “health”, performance, and functioning.

Theoretical Implications

This work measures role ambiguity (LibRA) for information workers with a diverse intrinsic

differences using their self-described portfolios as shared on professional social networking

website (LinkedIn). Traditionally, registries and census organizations have served as analo-

gous source of data for people’s professional portfolios. This study reveals the feasibility

of measuring a role related construct (here LibRA) at scale via a previously unexplored,

low-cost, and unobtrusive source of data. Management and economics research is advancing

in ways that can use this data to operationalize and derive existing measures in novel ways.

Thereby, this study revisits old questions in labor economics where existing efforts have

been limited to statistical numbers such as salary distribution, unemployment rates, and

so on. This study can potentially complement these numbers with richer information on

satisfaction and wellbeing at scale.

4https://www.nsf.gov/eng/futureofwork.jsp
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This work lays the foundation of studying employee wellbeing through unobtrusive

online data sources that set up marketplaces for employees. These include other professional

networking websites such as Meetup, Xing, Jobcase, etc. Being platform-agnostic, methods

in this study can be easy to replicate in other platforms or other contexts. In addition, this

study combines organizational sciences, and can further be used to advance our understand-

ing of coping mechanisms, incentives, and job satisfaction in general at workplaces, by

adopting a technology-focused and technology-driven lens.

Because this work uses individuals’ self-described portfolios of job roles and respon-

sibilities, it enables to objectively assess the differences in “what the individual considers

and self-describes themselves to be doing”, and “what the company hired them for, or what

their job description states”. That is, the individual may only be showing normative and

socially influenced behavior at their work, or show there is information gap, or reveal they

intend to invest more effort to learn and gather experience themselves. These behaviors

are detectable oblivious to the presence of role ambiguity. Such “unaware role ambiguities”

are challenging to capture using traditional approaches as they are tuned to measure the

“perceived role ambiguity”. Language can reflect differences in personal traits as well as

situational ones [250]. This additionally makes our measure less subjectively biased than

traditional methods of measuring role ambiguity.

Practical and Technological Implications

Individual-Centric Implications. This study can be used to develop self-reflection tools

for employees to mitigate their intrinsic bias in perceived role ambiguity. This can help them

continually assess themselves on their skillset and productivity at work. Such self-reflection

tools can include within and across organizational role comparisons. These can benefit

the employees to have more streamlined information reducing their job search costs and

effort, and enhancing their wellbeing. In addition, describing tasks or job role is partially a

self-reflection process, and a tool that scores for a type of description will help individuals

123



to identify sources of their role ambiguity.

Further, self-reflection is known to have a positive influence on job satisfaction and

wellbeing [174]. Integrating self-reflection tools with our approach would facilitate auto-

mated (self)-assessment of one’s skillset, interest, and adaptability to an organizational

role, and indirectly help them estimate their productivity, wellbeing, and job satisfaction at

both their current as well as a future potential workplace. By logging roles, responsibilities,

and tasks in a longitudinal fashion, an individual can assess their professional growth and

development, and can also be prompted with recommendations for skill training wherever

necessary. For the individuals who want to seek professional career-related advice, these

logs can function as a diary-style data source to professional mentors and career counselors

for better understanding of one’s career trajectory, beyond the information presented in a

resume.

Organization-Centric Implications. Presently job and skillset training at organizations is

not streamlined [442]. Either they train a lot of employees in a batch, or they mentor them

individually. However, with more information regarding how employees perceive their role,

employers can identify the area of training required that will reduce role ambiguity and

enhance the productivity of employees. This method can help reduce the time to identify

such role ambiguity gaps, reducing training and employee wellbeing costs. This in turn, can

improve employee retention for companies by identifying turnover intentions.

Aligning with and confirming the literature [361], our findings suggest that LibRA is

not dependent on individual differences such as personality, gender, supervisory role, and

executive function. This can inform organizations how these roles or titles can be transformed

to match skill-level, task-assignment level, and incentive-level restructuring. This study

calls for more careful development of job descriptions. Organizations can involve team- or

sector- level staff in curating job descriptions that are more attuned to employees, and can

dynamically update the descriptions in accordance with the necessity [312, 349].

The interest in human resource management is still nascent but promising in the HCI
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and design community. In fact, cross-disciplinary literature pertaining to workplaces and

online technologies provide potential use-cases urging the attention of designers [574]. Our

work has implications towards designing and developing organization-centric technologies:

(1) First, tools can be built that suggest carefully chosen, fine-tuned job titles to compa-

nies, based on LibRA [41, 258]. This is particularly important because younger organizations

sometimes offer (higher ranking or impressive-sounding) titles to employees in lieu of higher

salaries, but this strategy has been reported to backfire due to increased role ambiguity,

affecting employee productivity and wellbeing [551]. Adoption of tools that inform organi-

zations about existing ambiguities in specific job roles, therefore, has the potential to make

the workplace and individual roles more conducive to effective coping against workplace

stress [365]. Moreover, professional social networking platforms (such as LinkedIn) are

already heavily used to recruit by job agencies and resume matching consultancies [351].

Such agencies can use insights gained from our approach to match and recommend suitable

jobs to prospective employees.

(2) Second, this study can help design workplace tools and dashboards to enhance

organization “health” or functioning. Such dashboards can unobtrusively and proactively

assess employee role ambiguities at scale, taking employees’ privacy considerations into

account. In fact, many companies already provide their employees with internal social media

platforms [177], online engagement forums, or even email profile description spaces, where

they can regularly update their self-explained expertise and role descriptions, along with

manager or peer-appraised testimonials. By leveraging such internal datasets, companies can

potentially adopt these dashboards to gauge role ambiguity to make informed role matching

for open positions in internal hiring. Companies can also restructure and reassign current

employees with appropriate incentivization and compensation on their task and workload.

This study showed that role ambiguity may not necessarily be “bad”. It is possible that

individuals who demonstrate desirable organizational characteristics, such as proactivity and

initiative [143], may show high role ambiguity. Therefore, it requires caution in how LibRA
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is made actionable by companies, especially in the light of the many possibilities to build

the above organization-centric technologies. Again, companies should not only encourage

and provide rewards for these type of employees because they bring role and skill diversity

to the organizational culture, but also consider shepherding these individuals with better

coping strategies so that they deal better with their wellbeing concerns that are attributed to

an underlying role ambiguity [359].

Social Computing Implications

This study bears implications for social computing system design. Platforms such as LinkedIn

cater to both individuals by recommending them jobs, and to companies by recommending

them individuals. Their recommendation algorithms can directly leverage LibRA, com-

plementing and going beyond general skills and experience matching. In addition, social

computing platforms can aggregate role ambiguities across and within organizations. This

will add more transparency on company experiences, complementing review websites (such

as Glassdoor) [155]. Finally, LinkedIn already enables individuals to gauge their “profes-

sional value” based on their profile stats [633]. An added feature to that could be a measure

like LibRA, and guided recommendations on the basis of one’s weaknesses (in terms of role

ambiguity) to online training (such as Lynda5), or with classes at local third-party training

centers. For privacy-preserving purposes, LinkedIn anonymizes one’s list of followers [633],

but this also compounds the fact that there is no structured way to know “who sees what

on Linkedin”, adding complexity in terms of the audience is a problem that an individual

faces [305, 389, 403]. However, the platform can adopt design changes such as allowing

individuals with diversified interests to create multiple professional personas for different

audiences. For example, someone who is both a Software Engineer as well as a part-time

Physics Tutor, may self-promote their expertise and gain visibility in both the disciplines

but to different controlled audiences [337], who can assess their role-related constructs only

5linkedin.com/company/lynda-com/, Accessed 2019-03-21
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on the discipline that they are interested in.

Ethical, Privacy, Social, and Policy Implications

Back in 2014, when Zhang, De Choudhury, and Grudin studied “creepiness” and privacy

concerns related to social media use by workplace professionals, they found concerns

shifting from boundary regulation to behavior tracking by social media platforms [682].

One data-driven behavioral inferences has evolved since then, and also come under scrutiny

for privacy breaches such as the Cambridge Analytica scandal [94]. This work renews

attention to the challenges that may arise when employee data is appropriated for workplace

surveillance; as Van Dijck’s research noted, “LinkedIn’s functionality goes beyond its self-

claimed ambition as a professional matchmaker, and ventures into behavioral monitoring.”

In fact, with research like this that uses people’s online self-presentation to infer offline

behavior (with high-risk decision outcomes such as career) augments several complexities

to the perception of ethics and privacy, and consequently people’s social media behavior.

Although this work leverages public social media of individuals, it raises questions on

the privacy-breach of individual information. An employee’s motivations and expectations

for LinkedIn might have been only to network or to browse jobs, and they may be well

unaware that their published portfolio may also be used to analyze their present or future

role-ambiguity and measures of organizational fit or job security [25, 152, 633, 682],

which the individuals may not feel comfortable about, especially when this information

is made accessible to their employers. This work is not intended to facilitate employer

surveillance, which shares a competing relationship with employee’s subjective expectation

of privacy [144, 236, 588].

More elaborately, as per Goffman’s theory of self-presentation, individuals may present

two kinds of information — one that they intend to “give off”, and one that “leaks through”

without any intention [249, 421]. This implies that both the perspectives may be present in

our sort of research. Publishing role descriptions as online portfolios on social media benefits
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the individuals in many ways, but methods like this may abuse the data without their consent

or awareness. Employers may make inferences about role ambiguity and job satisfaction

to make decisions on rewarding, promotions, or even retention and layoffs. To regulate

such practices via the use of social media data, employee right protection agencies and

lawmaking bodies should consider making guidelines on how organizations engage in data-

driven decision making regarding their workforce [321]. This work calls for constitutional

jurisprudence in employee social media rights and employer surveillance [236, 321].

Additionally, companies have varying kinds of expectations, history, culture, structure,

and needs in their organizations that are latent and beyond what role descriptions say [215,

411, 574]. These factors, alongside platform-related and individuals’ intrinsic factors that

may impact their role ambiguity assessments, should be accounted for before making

decisions merely on any sort of data-driven form of inferred role ambiguity.

On the contrary, individuals may also start gaming the system, and describe themselves

in language that is more attuned with their role descriptions at work to gain professional

advantages [633]. Such deceptive behavior calls for action for stakeholders with diverse

interests ranging from academia and industry, as this adds complexities, and may even

rigorously change the whole social computing ecosystem on LinkedIn compared to how it is

used now. The platform may consider bringing moderation of content or user flair/karma

(such as on Reddit) to enable that only credible information is shared on the platform.

Presently, LinkedIn already includes features such as testimonials and recommendations that

may be leveraged to counter such behavior on LinkedIn. However, such measures are biased

as well and can cause Matthew Effect (the rich get richer, and the poor get poorer) [414], so

accounting for them needs additional consideration.

In addition to the above, our work is only able to measure role ambiguities for those

who are on LinkedIn, predominantly in white-collar jobs. According to Pew Survey Reports,

25% of U.S. adults are on LinkedIn, and the demographic is skewed towards the younger,

urban, and college-graduate individuals [479]. It is likely that only “privileged” individuals
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can benefit from these kinds of online- or technology- driven measures to advance and

positively impact their job outcomes and wellbeing, e.g., via the self-reflection tools as

discussed above. Consequently, those who are not on the platform (which could due to their

socio-economic conditions, e.g., the vast majority of blue-collar job workers, or by choice),

may feel compelled to use it owing to social and professional pressures of being on it. This

adds to the complexities related to digital inequalities in job-seeking and job summarization

behavior on the internet [259, 328, 685].
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CHAPTER 5

ADDRESSING CHALLENGES OF SOCIAL MEDIA DATA BY

COMPLEMENTARY MULTIMODAL SENSING DATA

While the previous two chapters show the potential of social media as a passive sensor in

human behavior and wellbeing studies, we also need to realize that social media data comes

with limitations. This chapter aims at proposing methodologies to overcome some of these

limitations by complementing social media with multimodal sensing data.

In the first study, we build machine learning techniques that use social media data

as a passive, unobtrusive sensor for inferring mood instability, alongside actively sensed

data given by EMAs. We first develop a seed classifier that uses EMAs from a mobile

sensing study (CampusLife) as ground truth data to predict binary mood instability status

of individuals from their Facebook content. We augment this classifier to improve its

robustness and reduce overfitting by adding public data samples from Twitter. We evaluate

this augmented classifier on unseen populations of Twitter users who self-disclose suffering

from bipolar and borderline personality disorders. This study advances the health sensing

research agenda by introducing a new modality of pre-existent, large-scale sensor data—

social media, which can significantly improve the modeling and inferential capabilities of

small-scale active sensing frameworks.

In the second study, propose a statistical framework to leverage the potential of social

media in sensing studies of human behavior, while navigating the challenges associated

with its sparsity. Our framework includes principled feature transformation and machine

learning models that predict latent social media features from the other passive sensors.

We demonstrate the efficacy of this imputation framework via a high correlation of 0.78

between actual and imputed social media features. With the imputed features, we test and

validate predictions on psychological constructs like personality traits and affect. We find
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that adding the social media data streams, in their imputed form, improves the prediction of

these measures. This framework can be valuable in multimodal sensing studies that aim to

gather comprehensive signals about an individual’s state or situation.

5.1 Leveraging EMAs for Groundtruth to Infer Mental Health on Social Media

In the assessment of mental wellbeing, two central constructs are mood and emotion. A

number of mood disorders are characterized by patterns of persistence or fluctuation in mood,

for example, bipolar disorder, in which the person experiences swings between depressed

and elevated mod [22].In fact, for many psychotic disorders and experiences, the ebb and

flow of symptoms varies with changes in mood and affect [81, 401, 465].

In addition to being a core criterion for many mood disorders, certain daily mood

patterns may also be important for predicting the onset of mood and psychiatric disorders.

For instance, a number of studies have observed that individuals who show abnormally

unstable moods are more likely to later develop severe psychosis [140]. Specifically, mood

instability may indicate challenges with regulating emotions. Emotion regulation is the

process, which influences the emotional experience of an individual, as well as, how and

when they express an emotion [267]. In theory, the root of most major psychopathologies is

the difficulty that the people have when attempting to regulate in terms of theri intensity or

duration [488]. Consequently, measuring mood instability, or frequent temporal changes of

mood, in terms of its two dimensions, valence and arousal [487], is recognized to be critical

in understanding any causal pathways between mood and mental well-being, as well as in

developing intervention capabilities that can bring timely help to those in need [487].

Current capabilities to measure mood instability are limited — psychologists and clini-

cians have deployed survey instruments, such as the Affective Lability Scale [289]. When

these instruments ask people to summarize their emotional experiences from a long segment

of time in the past, the data can be distorted by recall bias and by bias in the process of

interpreting and integrating past experience [577]. When researchers measure affect infre-
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quently, they may further not capture short-term dynamics in mood or the context of the

experience, both of which are needed to fully describe the persistence or instability of mood.

Taken together, these weaknesses can substantially limit the utility of these instruments for

the assessment of mood instability.

Since its emergence in the 1970s, a technique known as “ecological momentary assess-

ment” (EMA), has been increasingly applied to overcome these challenges in questionnaire-

based approaches to affect measurement [146, 295, 577]. With EMAs, participants are

prompted to respond to survey items sporadically throughout the day as they engage in

typical activities. In fact, in recent work, mobile phone applications have been built to make

EMA data easier to collect and less burdensome for participants [485, 683]. These modern

EMA applications can therefore be considered “active" sensors, in that they require active

participation by the individual. While EMA as a form of active sensing enables capturing

affective states in an individual’s natural habitat and uses a direct method to gather accurate

in-the-moment affective information, it requires careful and highly engineered study design,

as well as continual, proactive engagement of the user to answer questions [122]. Therefore,

it may be vulnerable to high participant burden and may result in low compliance when

data acquisition is required for extended periods of time [485, 683]. Researchers have

begun to employ various forms of passive sensing [579], such as by logging an individual’s

phone usage and via wearable sensors, to address these limitations [7, 98, 291, 360, 363,

382]. There has been significant success in these sensing techniques when applied in the

context of affect and mood measurement [187, 269, 650]. However, despite the dense, high

fidelity data they capture, existing active and passive sensing paradigms are prone to biases

and scalability issues due to resource and logistical constraints, such as cost and active

compliance of the participants [565, 620].

This article introduces a new modality of passively sensed health, social and behavioral

data, specifically that gathered from social media, to overcome some of the challenges noted

above. A growing body of work has employed social media data as a “sensor” to identify
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markers and assess risk to a variety of different health and well-being concerns that have

social underpinnings, including mood and affective disorders [136, 166]. In the context of

this paper, social media based sensing of moods and their fluctuations over time can capture

affective experiences and behaviors spontaneously, reducing the significant bias impacting

affect and mood recognition in controlled environments [161]. Moreover, social media data,

through quantification of language can enable capturing rich contextual information about

mood and its dynamics. However, since sensed data gathered from social media is often

sparse and often does not include gold standard markers of well-being states, research has

begun to utilize it in conjunction with other conventional forms of sensing, such as active

sensing [370]. Our work in this paper extends these early investigations.

Our research objective in this paper examines whether and how high fidelity active

sensing data may be augmented with large-scale, naturalistically-shared social media data

to infer mood instability. The computational investigations presented in this paper leverage

a pilot mobile sensing study within the CampusLife project at Georgia Tech, that provided

access to 1,606 mobile EMAs over five weeks, and a Facebook archive of 13,340 posts

from 23 college student participants. This study also considers a complementary population

experiencing a set of mental health challenges who can highly benefit from capabilities that

enable sensing mood instability, and who, per literature [22, 141], are likely to exhibit signs

of high mood instability. I employ a Twitter corpus of over 21 million posts from 9,654

individuals who self-reported their diagnosis of bipolar or borderline personality disorder

on the platform. Using a theoretically-grounded quantification of mood instability from

EMAs [323, 622], this study makes the following contributions:

• A seed classifier to detect binary mood instability status (low, high), utilizing the

EMA responses of the CampusLife participants as ground truth, and psycholinguistic

attributes from their Facebook posts as features.

• A semi-supervised machine learning framework to augment the above seed classifier

of mood instability by incorporating data samples acquired from Twitter; specifically,
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Table 5.1: Descriptive statistics of
the DASS-21 data collected through
enrollment questionnaire. Levels in-
ferred per prior work [253].

Level Dep. Anx. Str.

Normal 26 27 26
Mild 5 6 9
Moderate 8 10 8
Severe 3 0 1
Ex. Severe 3 2 1

Table 5.2: Descriptive statistics of the Facebook
seed dataset collected from 23 participants in
the CampusLife study.

Feature count mean median stdev.

Friends 10,578 459.91 372 321.20
Likes 3358 152.64 102 173.22
Profile Pictures 433 18.83 9 18.00
Status 13,340 580.00 294 713.48

an approach by which the model can learn from both (scarce) labeled and (voluminous)

unlabeled data around mood instability.

• A lexicon of language cues appropriated on Twitter, that are highly indicative of low

or high mood instability.

5.1.1 Study and Data

The sensing data employed in this work is derived from a larger mobile sensing study that

was conducted in April 2016 involving several college students at Georgia Tech, a large

public university in the southeast of the U.S. The study was approved by the Institutional

Review Board at Georgia Tech (#H16009).

Participants Participants (undergraduate and graduate students at the university) were

recruited by word of mouth, flyers, and social media advertising. In addition, recruitment

email messages were sent to students by the registrar and by instructors of a mandatory

course for undergraduates. A total of 51 participants enrolled in a five week-long study

(40% females and 60% males; 46% undergraduates and 54% graduates; mean age 22 years).

Similar to the study conducted within the StudentLife project [651], the smartphones (the

Android operating system only) of the participants were instrumented to collect a variety of

actively and passively sensed data: active data were collected through a commercial EMA

platform, called Quedget and passive data were collected through the sensors on board.

Participants also answered different psychological survey questionnaires, during the study.
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Table 5.3: Descriptive statistics
of the EMA data collected in the
CampusLife study.

Metric Value

Number of Participants 51
Number of Responses 1,606
Mean of Responses/Participant 31.49
Median of Responses/Participant 28.00
StDev. of Responses/Participant 21.13
Period of study 5 wks.

Table 5.4: Descriptive statistics of the Twitter mental
health dataset.

Metric Borderline Bipolar Control

Number of Users 6,326 3,328 9,394
Number of Tweets 14,780,813 7,095,801 15,136,451
Number of Tokens 194,801,582 101,397,309 411,656,658
Mean of Tweets/User 2,336.52 2,132.15 1,611.29
Median of Tweets/User 3,398.00 2,858.00 1,131.00
StDev. of Tweets/User 1,310.27 1,374.35 1,432.05
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At the end of the study, participants could also volunteer for a one-time access to their social

media data.

Study Procedure The CampusLife study consisted of orientation, data collection and exit

stages, as also employed in the StudentLife study [651].

Orientation. At the start of the study (orientation), participants were first required to watch

a pre-recorded video and tutorial developed by the study team that described the research

goals of the study, the study procedures, the types and mechanisms of data collection, the

privacy considerations, as well as the risks and benefits involved in participation. Each

participant was then provided with an IRB approved consent form to sign; on signing

this form, participants agreed to allow the research team to acquire active and passive

sensing data from their personal Android smartphones. Members of the research team

also familiarized the participants with the EMA software interface and the procedure for
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responding to EMA prompts on their phones.

During the study, participants’ intent to share social media data was sought through a

yes/no survey question. The participants were then directed to an online survey (administered

through Qualtrics) that included a battery of already validated questionnaires to assess their

mood, individual differences (e.g., demographics), and mental well-being status (Perceived

Stress Scale (PSS) , Flourishing Scale, and Depression Anxiety and Stress Scale (DASS-

21) [24] ). The purpose of using these questionnaires was to establish baselines for the

mental well-being of the participants: For instance, among the participants who answered

the DASS-21 questionnaire, we found notable variation in their psychological well-being,

although our study population is not a clinical one. That is, mapping the responses given on

the DASS-21 scale to levels of depression, anxiety, and stress based on prior work [253], we

observe that about 47% of our participants showed above-normal levels of either depression,

anxiety or stress (Table 5.1). This indicates the presence of sufficient proportion of the

population in which a wide range of expression of mood instability levels may be expected.

Exit Stage. At the time of study conclusion (exit stage), participants who indicated affirma-

tively about their willingness to share social media data during orientation, met with the

researchers face to face. During this meeting, they were provided with a second consent

form for the social media data collection. This consent form enabled a one-time download

of a participant’s social media, specifically Facebook and/or Twitter archives which we then

de-identified and stored in a secure, encrypted server for the ensuing analysis presented in

this paper. Participants could consent to share both or either of these two types of social

media data. All participants were instructed to bring their laptop computers to this meet-

ing, as a privacy-preserving mechanism to download their Facebook data. Our choice of

Facebook and Twitter as the two social media platforms was driven by statistics from the

Pew Research Center [262], which reports these as two of the most popular platforms in

college-aged populations.

Incentives. Participants were given $40 for the time and effort required to enroll in the study
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and install software on their phones. Additionally, they were paid in direct proportion for

each answered EMA (up to a maximum of $40). They were given additional compensation

if they consented to share any of their social media data, with a maximum of $40 if they

shared all of the social media data we requested. As an incentive to attend the information

sessions in which we introduced the study, we provided food, beverages, and $5 gift cards

to those in attendance.

Sensing Data

EMA Data As mentioned above, EMA data was collected from the participants through a

platform known as Quedget. The process of responding to a questionnaire item can impose

a burden even before a subject faces the labor of responding. Quedget is designed to use the

lock-screen of a smartphone as a way of gaining attention only when a subject is between

operations. On this Android-only platform, a researcher-defined schedule determines when

and which questionnaire item is displayed on the lock-screen of a participant’s phone. This

study defined four mutually exclusive four-hour long time windows between 9 am and 11

pm, during participants were presented with questions. Within a specific window, Quedget

calculated a random time to trigger the prompt.

The EMAs spanned a variety of questions, such as a Photographic Affect Meter

(PAM) [485] (see Figure 5.2). Psychology literature situates valence and arousal dimensions

to comprehensively describe an individual’s affective state at any moment [488], and PAM

has been found to be well-suited for the purpose [485]. The PAM EMA questions showed

participants a set of images ordered in a 4 ×4 grid, where each image corresponded to a

mood of specific valence and arousal (e.g., “angry”, “excited”, “satisfied”, “tired”) – the

rightmost top image in the grid refer to High Valence and High Arousal, whereas the leftmost

bottom image refer to Low Valence and Low Arousal (see Figure 5.2). Participants could

select the image that best captured their current mood. By the end of the five-week study

period, a total of 1,606 PAM valid EMA responses were collected, spanning all of the
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Figure 5.2: Screenshot of PAM.

participants. The participants responded to these EMA questions mostly during the period

of 9AM to 10PM, based on the previously described Quedget schedule (ref: Figure 5.1a).

Table 5.3 reports the descriptive statistics of the PAM EMA data.

Social Media Data At the exit stage of the study, participants who consented in sharing

their Facebook data, downloaded and shared their Facebook account’s data dump (starting

from the data of their account creation to the date of data collection) as HTML files

on laptops. To create data dumps, the participants used a feature provided by Facebook.

Participants were instructed to personally delete their private messages and all photos from

the created data dumps. The downloaded and curated data from the participants’ laptops

was then stored by one of the study support volunteers into a detachable hard drive (per the

approved IRB instructions), which was eventually uploaded to a secure, encrypted server.

These downloaded Facebook data files were parsed, and timeline activities were extracted

(which includes “like” information, friend connections initiated and accepted, posts about

profile pictures, status updates, check ins into different locations, etc.). This study mainly

focuses on the linguistic content of the 13,340 posts of the participants. Table 5.2 reports

the statistics of the Facebook data. Out of the 51 participants who provided EMA data, 23

participants provided EMA data, provided their Facebook data. This is referred to as the

dataset of 23 participants in the rest of this paper as the “seed dataset”.

Also, 10 participants in the above population of 23 also consented to share public Twitter
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Table 5.5: Search phrase/method for Twitter data collection for three different samples.

Bipolar Borderline Control

“i have bipolar disorder” “i have borderline personality disorder” Twitter stream with en as filter
“i have been diagnosed with bipolar
disorder”

“i have been diagnosed with border-
line personality disorder”

Remove usernames in Bipolar and
Borderline datasets

“i was diagnosed with bipolar disorder” “i have been diagnosed with bpd” Remove user timelines with text con-
taining ‘bipolar disorder’

“i suffer from bpd” Remove user timelines with text con-
taining ‘borderline personality disor-
der’

“i was diagnosed with bpd”
“i am suffering from bpd”

data; that is, they shared their Twitter usernames (or handles) during the exit stage of the

study. Utilizing these handles as query terms, I leveraged Twitter’s official API to obtain

their posts shared in 1. This is referred to as the “validation dataset”. It contains 1425 posts

in all, with a mean and median of 142.5 and 58.5 posts per participant respectively.

Twitter Mental Health Data

One of the limitations of the dataset collected through the above CampusLife mobile sensing

study is its small sample size, which may present challenges in building computational

models of predicting mood instability. To circumvent this challenge, and to develop inference

frameworks for mood instability on larger scale of social media data, we choose Twitter

as a source to augment our existing social media data gathered through the CampusLife

study. Our choice of Twitter data is motivated by prior work: due to its largely public nature,

in contrast to Facebook, Twitter data has been used to study mental health concerns [162,

166]. This facilitates not only the collection of large-scale data toward studies like ours,

but also, enables identifying and gathering data of individuals who publicly share self-

reported diagnosis of their mental health conditions, such as depression, bipolar disorder, or

post-traumatic stress disorder [136]. This study is particularly interested in augmenting our

seed data from Facebook with complementary Twitter data of individuals who are likely to

exhibit a wide range of mood instability. As noted earlier, two conditions wherein sufferers

1The API returns the last 3,200 posts of a given user, which in most cases of an average Twitter user, covers
their entire timeline data.
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are known to be challenged by significant mood variability include bipolar disorder and

borderline personality disorder [22, 141, 465]. Our Twitter mental health data collection

pursued a strategy to collect data around these two conditions.

This second data collection is conducted by searching for tweets with the Twitter Search

API, wherein users had made explicit self-disclosure of the diagnosis or experience of

bipolar disorder and borderline personality disorder. These searches were spawned with a

set of keyphrases given in Table 5.5. The choice of the keyphrases were motivated from

prior work where a similar data acquisition strategy has been successfully applied to identify

populations struggling with a mental illness [136], and where it has been observed that

these self-reports do indeed capture actual clinical conditions as assessed by experts and

psychiatrists [169]. Next, for all of these tweets, I query the timelines of their authors using

the Twitter API. Each user timeline refers to a collection of text (capped to a maximum of

3,200) tweeted by a single user. Using this mechanism, we collected 6,326 and 3,328 user

timelines of individuals who disclosed the diagnosis or experience of bipolar disorder and

borderline personality disorder respectively. Hereforth, we refer to these datasets as Bipolar

and Borderline respectively. I also collect an independent sample of tweets using the Twitter

Streaming API, which returns live tweets at a particular time. I repeat the above approach to

fetch user timelines for these tweets; then I filter out any user who occurr in the datasets

Bipolar or Borderline, or if they mentioned ‘bipolar disorder’ or ‘borderline disorder’ in

their tweets. This third sample of filtered user timelines results to 9,394 users and I call this

dataset Control in this paper.

The Twitter mental health dataset finally comprises a total of over 37 million tweets

shared by 19,048 unique users (ref: Fig Figure 5.1b gives the tweet to user distribution).

Table 5.4 reports the descriptive statistics of this dataset, and Figure 5.1c shows a comparative

plot of the seed (Facebook) and mental health (Twitter) datasets.
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5.1.2 Method

Quantifying Mood Instability

The participants logged their mood via a set of 16 distinct PAM images, arranged in a 4×4

grid, where valence and arousal increase along the horizontal and vertical axes respectively.

I refer to the literature on PAM [485] to map the 16 PAM moods into numeric tuples of

valence and arousal values— these values are derived from the absolute position of a mood

image in the 4×4 grid, where the values can be -2, -1, 1 and 2 [485]. Using the mapping

given in Table 5.6, I quantify a participant’s momentary mood states in terms of valence and

arousal, which I next use to quantify their mood instability.

To quantify mood instability of a participant, it is necessary to calculate the successive

differences in momentary mood states logged by the participants. Since the consecutive

observations for any participant do not have uniform time differences in our study (EMAs

were randomly triggered at different times of the day), changes or fluctuations in mood

cannot be quantified from simple time series analysis of EMA responses. Therefore, I adopt

a method proposed in [323] to compute the Adjusted Successive Difference (ASD) functions

for the valence (and arousal) dimensions of a participant’s mood. If xi is the valence (or

arousal) of a participant’s logged mood state at time ti, I compute its ASDs based on

Equations Equation 5.1 and Equation 5.2:

ASDi+1 =
xi+1 − xi

[(ti+1 − ti)/Mdn(ti+1 − ti)]λ
(5.1)

Here λ is chosen by minimizing the following cost function, sum of square of the error
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Figure 5.3: A schematic diagram showing the computation of the HighMI and LowMI classes
with EMA data.

of expectation (SSEE):

SSEE(λ) =
∑
i

[EAASD(ti+1−ti)(λ)− C(λ)]2

=
N−1∑
i=1

{
E

{ |xi+1 − xi|
[(ti+1 − ti/Mdn(ti+1 − ti)]

}
− C(λ)

}2 (5.2)

The expected absolute successive difference (EASD) is obtained by nonparametric

curve fitting regression method of lowess—a method for fitting a smooth curve [127].

Further, the expected adjusted absolute successive difference (EAASD) is calculated by

an adjustment, which eliminates the dependency of EASD on the time intervals. The

EAASD(λ) at the median time interval is used as the C(λ) (Equation 5.2).

Once I obtain the valence (and arousal) ASD of all participant’s mood states reported

throughout the study period, I calculate the mean absolute deviation (or MAD) for each of

the ASDs, referred to as MAD(ASDv) and MAD(ASDa), corresponding to the valence

and arousal dimensions respectively.

The sum of MAD(ASDv) and MAD(ASDa) is then referred to as a participant’s

overall mood instability MI throughout the study period — a high MI would indicate that

either valence or arousal or both dimensions of their mood states tend to generally show

large fluctuations, whereas lower values of MI would imply one or both of the dimensions

to exhibit fewer shifts over time. Finally, employing the median of the MI distribution

over all participants as a threshold, I categorize the participants into binary class labels,
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HighMI and LowMI respectively. Those with MI above the median of the MI distribution

are assigned the HighMI class, and those with MI under the median are assigned the LowMI

class. The steps involved in categorizing users as HighMI and LowMI from EMA data, in

Figure 5.3, and with the following equations:

MI = MAD(ASDv) +MAD(ASDa)

MI Class Label =


LowMI if MI ≤Mdn(MI)

HighMI otherwise

(5.3)

Note that median is a conservative, yet intrinsically understandable and robust measure

for central tendency of a distribution. Hence it is adopted as a decision boundary for assessing

levels of mood instability in the participants of our study. Although a continuous estimate of

the distribution would have been a better quantification of mood instability, it would have

made the MI inference task far more difficult, especially in this case, with only a small

amount of ground truth data.

Building a Seed Classifier of Mood Instability

Utilizing the above inferred binary levels of mood instability (HighMI and LowMI) in the

participants of the CampusLife study, I build a classification framework to predict these

class labels from the seed dataset. Although the CampusLife study also acquired Twitter

data from a small set of the participants, Facebook is employed as the data source for the

seed classifier as it provides with a larger sample of ground-truth labels over Twitter (23 vs.

10 participants).

To build a classifier for mood instability, I extract psycholinguistic features from par-

ticipants’ Facebook data. I focus on the status messages shared on their timeline. I employ

Linguistic Inquiry and Word Count, or LIWC [475] on the Facebook posts—this psycholin-
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guistic lexicon has been extensively applied and validated on several studies of social media,

behaviors, moods, and mental health [162, 166]. I use 50 of the most relevant LIWC cate-

gories per prior work [166], grouped as: (1) affective attributes (categories: anger, anxiety,

sadness, swear, positive and negative affect), (2) cognitive attributes (categories: cognitive

mech, discrepancies, inhibition, negation, causation, certainty, and tentativeness), (3) tempo-

ral references (categories: future, past and present tense), (4) interpersonal focus (categories:

first person singular pronoun, second person plural pronoun, third person plural pronoun and

indefinite pronoun) (5) lexical density and awareness (categories: adverbs, verbs, exclusive,

inclusive and preposition), (6) perception (categories: feel, insight, percept and see), and (7)

social/personal concerns (categories: achievement, bio, body, death, home, humans, sexual

and social). For every participant, I aggregate the occurrence of the word and word stems in

each of these LIWC categories, followed by their normalization based on the total number

of tokens (words) in the participants’ posts. Using this approach, I construct a feature vector

of 50 dimensions, for the participants.

I build a supervised machine learning models using the data obtained so far in this

section—the ground truth labels of mood instability (HighMI and LowMI) in the 23 Campus-

Life study participants (dependent variable), and the psycholinguistic features extracted with

the LIWC lexicon above (independent variables). I evaluate multiple classifiers, including

Naive Bayes, Logistic Regression, Random Forest and Support Vector Machines (with

different kernels such as linear, radial basis functions and polynomial). I employ a k-fold

cross validation (k=5) strategy for parameter tuning.

Semi-Supervised Modeling of Mood Instability

Note that the number of examples in the seed training data from Facebook (23) is much

smaller than the dimensionality of the feature set (50), which risks the seed classifier C0 in

overfitting the data. Semi-supervised learning is a recommended technique in cases where

labeled data is expensive or scarce, but where unlabeled data is abundant and significantly
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Table 5.6: Mapping of PAM cate-
gories to numeric values of Va-
lence and Arousal as per prior
work [485].

PAM Valence Arousal

Afraid -2 2
Angry -1 1
Calm 1 -1
Delighted 2 2
Excited 1 2
Frustrated -2 1
Glad 2 1
Gloomy -2 -2
Happy 1 1
Miserable -2 -1
Sad -1 -1
Satisfied 2 -1
Serene 2 -2
Sleepy 1 -2
Tense -1 2
Tired -1 -2

Algorithm 1: Semi Supervised Mood Instabil-
ity Classifier

Input: CampusLife Facebook Data F (Seed
Dataset), Twitter User Timelines T (Target
Datasets).

Output: Mood Instability MI of Twitter Users
X0, Y0 ← Psycholinguistic Features, Mood

Instability of F
T1, T2 ← Random Samples of T {T1 < T2}
X1 ← Psycholinguistic Features of T1

X2 ← Psycholinguistic Features of T2

Classifier C0 ← SVM (X0, Y0)
Clusters < S >← K-Means Clustering (X1)
CD ← Initialize Dictionary < Key, V alue >
for every i in K do

cc[i]← computeVectorCentroid (S[i])
l[i]← C0.predict (cc[i])
Add < cc[i], l[i] > as < Key, V alue > in CD

end
for every i in length(X1) do

label← Value for S[i] in CD
Add label to Y1

end
X ← concatenate (X0 + X1)
Y ← concatenate (Y0 + Y1)
Classifier C ← SVM (X, Y )
Y2 ← C.predict (X2)
return Y1 + Y2

easy to gather [115]. Unlike completely supervised learning such as classification, these

approaches devise ways of utilizing both labeled and unlabeled data to learn better models.

In prior work, similar methods have also been used in problem domains where positive

examples are a considerably rare occurrence, creating huge imbalance between the sizes

of labeled and unlabeled data [684]. These conditions satisfy our context as well. Thus we

employ a semi-supervised approach of improving the robustness of C0, by augmenting it

with training data from the Twitter mental health datasets (Bipolar, Borderline and Control).

Establishing Linguistic Equivalence The above semi-supervised learning approach in-

volves combining datasets spanning multiple social media platforms (Facebook, Twitter) and

multiple populations (college students vs. general online population). Therefore, I conduct

two tests of linguistic equivalence to demonstrate the feasibility of adopting the semi-
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supervised learning approach. The tests aim to establish that: a) content shared across the

seed and mental health datasets (from Facebook and Twitter respectively) are comparable—

establishing cross-platform equivalence; and b) that social media data of a college population

(the CampusLife participants) may be utilized to measure mood instability in an independent

population self-reporting bipolar or BPD diagnoses (Bipolar and Borderline data), and whose

specific demographics are unknown—establishing cross-population equivalence. I adopt an

approach involving pairwise comparison of word vectors, drawing from a similar technique

in the computational linguistics literature [34]. The technique involves first constructing

word vectors using the frequently occurring n-grams in each source of data, and then em-

ploying a distance metric, e.g., cosine similarity, to assess their linguistic similarity. Cosine

similarity of word vectors is an effective measure of quantifying the linguistic similarity

between two datasets [476], and a high value would indicate that the posts in the two datasets

are linguistically equivalent.

To establish cross-platform equivalence, I extract the most frequent 500 n-grams from

the seed dataset (Facebook), and the same from the mental health datasets (Twitter) (sample

size = 10,000). Next, using the word-vectors of these top n-grams (obtained from the Google

News dataset of about 100 billion words [417]), I compute the cosine similarity of the

two datasets in a 300-dimensional vector space. We observe that seed and mental health

datasets exhibit high cosine similarity (0.9), providing confidence in the use of the semi-

supervised learning approach. Additionally, I conduct a pairwise equivalence test to validate

the linguistic similarity between the Facebook and Twitter data of the same participants,

using the same technique. We do not observe any significant differences in the manner

in which Facebook and Twitter are used in our participant pool — for the 10 participants

for whom we have both Facebook and Twitter data, we noted high similarity (mean=0.85,

std.=0.15) in linguistic attributes (n-grams).

Towards assessing cross-population equivalence, I again employ word vector comparison

to first assess if the cosine similarity between the word vectors of the Twitter data of the 10
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CampusLife participants and that in the Bipolar and Borderline datasets is high. This leads

the similarity to be 0.94 and 0.95 respectively, indicating that the college student participants’

social media data is linguistically similar to the unlabeled mental health datasets we use in

our ensuing semi-supervised learning approach.

To assess the correspondence between psycholinguistic features from Facebook and

Twitter posts of same participants, I conduct two-sample Kolmogorov-Smirnov tests (KS

tests) for all LIWC features. The KS-statistic is very low, ranging between 0.01 and 0.38

across the features (median = 0.07 and standard deviation = 0.08), and only 33 out of 50

features exhibit a significance (p<0.05). This suggests that there is very little significant

statistical difference between the features of Facebook and Twitter datasets of the 10

participants who shared their data from both the sources.

Augmenting Training Data with Self-Training

Once cross-platform and cross-population linguistic equivalence is established, I proceed

with the semi-supervised learning approach. This study borrows from a method known as

“self-training” that assumes the data to naturally cluster into groups (in our case we would

expect HighMI and LowMI to exhibit similarities in their respective behaviors), and therefore

employs a clustering algorithm to categorize the whole dataset, and then label each cluster

with labeled data [150].

First, I proportionately separate random samples of 200, 100 and 300 users from our

Twitter target datasets, Bipolar, Borderline and Control. Next, I cluster these users in an

unsupervised fashion using K-Means (K=2) clustering. For each of these clusters, I find

the cluster centroids, and machine label the cluster centroids using C0. Using the predicted

labels of cluster centroids as labels, I augment the training data with 600 additional users

from Twitter. I describe our algorithm of classification in algorithm 1.
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Machine Labeling of Mood Instability in Unseen Data

I use the augmented dataset of 623 users (23 from the CampusLife study and 600 from

Twitter) to build a mood instability classifier C. I extract psycholinguistic features for

the posts of each user in this augmented dataset. Since the volume of posts of the users

within the Facebook and Twitter (seed and target) datasets vary significantly, I standardize

the feature vectors separately for our Facebook and Twitter dataset (i.e., re-scaling each

feature distribution to zero mean and unit variance [334]). Like before, I evaluate multiple

classification models, and use k-fold cross-validation (k=5). I employ the trained classifier

to predict the mood instability labels (HighMI and LowMI) of the users in the held out target

datasets, Bipolar, Borderline, and Control respectively.

Characterizing the Language of Inferred Mood Instability

This final subsection presents the methods I use for characterizing the language expressed in

social media that relate to HighMI and LowMI. Specifically, on the corpus of the posts of all

of the Bipolar, Borderline, and Control users that are labeled or inferred to be of HighMI or

LowMI, I extract the top occurring most relevant n-grams (n=1, 2, 3) and compute their Log

Likelihood Ratio (LLR) [175] across the two classes HighMI and LowMI. We consider the

minimum threshold of occurrence for an n-gram in any class as 500, and then calculate the

probability of occurrence of every such n-gram in the HighMI, to the same in the LowMI.

The LLR for an n-gram is determined by calculating the logarithm (base 2) of the ratio of its

two probabilities, following add-1 smoothing [332]. Thus, when an n-gram is comparably

frequent in the two classes, its LLR is close to 0; it is closer to 1, when the n-gram is more

frequent in HighMI, whereas, closer to -1, for the converse.
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Figure 5.4: Adjusted Successive Difference (ASD) plots of EMAs for three sample partici-
pants in the seed dataset.

Table 5.7: Accuracy of the seed mood insta-
bility classifier (C0) based on k-fold cross-
validation (k=5) on the seed dataset of 23
CampusLife participants.

Metric Mean Stdev. Mdn. Max.

Naive Bayes 0.58 0.54 0.75 0.83
Logistic Regression 0.51 0.35 0.50 0.80
Random Forest 0.48 0.64 0.50 0.83
SVM (Kernel=Poly.) 0.56 0.24 0.50 0.80
SVM (Kernel=RBF) 0.51 0.35 0.50 0.80
SVM (Kernel=Linear) 0.68 0.29 0.75 0.83

Table 5.8: Augmented training data follow-
ing K-Means (K=2) clustering.

Data HighMI LowMI Total

CampusLife 11 12 23
Bipolar 120 80 200
Borderline 65 35 100
Control 110 190 300
Total 306 317 623

5.1.3 Results

Seed Classifier for Mood Instability

Now, I present the results of developing a seed classifier of mood instability, utilizing the

Facebook data of the 23 CampusLife participants, and their mood instability labels (HighMI

and LowMI) inferred from their EMA data during the study period.

To quantify these mood instability labels, I begin by calculating Adjusted Successive

Difference (ASD) values of the EMA responses for each of the CampusLife participants. First,

I find λ by minimizing cost function, or sum of square of successive differences (SSEE(λ))

as defined in Equation 5.2. For this purpose, I iterate on n = [1, 10], where λ = 1/n, chosen

based on the method described in [622]. Figure 5.4 shows the ASD curves for three sample

participants in the study. Per these ASD values, I find that the overall MI of the participants

in the study ranges from 1.65 to 30.8, with a median value of 3.14. Based on the definition
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Figure 5.5: (a) A two-dimensional representation of the k-means clusters. The axes corre-
spond to the two largest principal components. (b) ROC (Receiver Operating Characteristic)
curve of mood instability classifier (C), built with augmented training data. (c) Precision-
Recall curve of classifier C, built with augmented training data. Small slope indicates good
performance.

Table 5.9: Performance metrics of mood in-
stability classification (C) based on k-fold
cross-validation (k=5) on seed dataset of 23
CampusLife participants.

Metric Mean Stdev. Mdn. Max.

Accuracy 0.68 0.29 0.75 0.83
Precision 0.66 0.49 0.83 0.88
Recall 0.68 0.31 0.83 0.83
F1-score 0.64 0.38 0.73 0.83

Table 5.10: Performance metrics of mood in-
stability classification (C) based on k-fold
cross-validation (k=5) on the augmented
data of 623 users.

Metric Mean Stdev. Mdn. Max.

Accuracy 0.96 0.09 0.98 0.99
Precision 0.96 0.07 0.98 0.99
Recall 0.96 0.09 0.98 0.99
F1-score 0.96 0.09 0.98 0.99

of HighMI and LowMI given in Figure 5.3, I obtain 11 and 12 users belonging to these

two classes respectively. To build a seed classifier for mood instability, I extract frequency

of occurrences of the psycholinguistic categories from the above labeled seed dataset of

23 CampusLife participants. After normalizing the distribution of these occurrences, I use

them as features and build several classification algorithms on the binary mood instability

labels HighMI and LowMI. Table 5.7 summarizes the accuracy returned by each of these

classification algorithms, including Naive Bayes, Logistic Regression, Random Forest, and

Support Vector Machines (SVM) with different kernels based on k-fold cross-validation

(k = 5). The SVM Classifier with linear kernel returns the highest accuracy (mean=0.68 and

max.=0.83). This motivates the choice for using this as the seed classifier of mood instability.

I refer to it as the C0 model.
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Table 5.11: Confusion Matrix of Mood in-
stability classification (C) based on users in
unseen data from three different twitter sam-
ples.

Data HighMI LowMI Total % HighMI

Bipolar 3863 2232 6095 63.38
Borderline 1997 1208 3205 62.31
Control 3272 5510 8782 37.26

Table 5.12: Results of independent sam-
ple t-test comparing target (Bipolar and
Borderline) and control datasets for mood
instability classification.

Data t-stat p

Bipolar 32.97 ***
Borderline 24.13 ***

Classification with Semi-Supervised Learning

Now I present the results of augmenting the above seed classifier of mood instability (C0)

with additional training data from the target datasets (Bipolar, Borderline, and Control);

for the purpose, I employ the semi-supervised learning method described in the methods

subsection.

To build a semi-supervised mood instability classifier, I apply K-Means (K=2) clus-

tering on LIWC feature vectors from a dataset of 600 Twitter users sampled from Bipolar,

Borderline, and Control. The choice of two clusters is motivated from the observation that I

intend to identify groups of users exhibiting one of the two mood instability labels—HighMI

or LowMI. I obtain two clusters with 295 and 305 user vectors respectively. Figure 5.5a

shows a visual 2-dimensional representation of these clusters based on the two largest

eigenvectors – I use principal component analysis [330] to extract the eigenvectors of the

user vectors in each cluster. I label the cluster centroids using C0 classifier, to determine the

first cluster consists of users with HighMI, and the second consists those with LowMI. These

cluster-labeled data, along with the labeled Facebook data of the 23 CampusLife participants

(623 users in all) becomes the augmented training data (ref: Table 5.8. This augmented

dataset has 306 and 317 users with HighMI and LowMI labels respectively.

Next, with this data, I build multiple classifiers of mood instability, with an SVM

classifier C with linear kernel, yielding the best performance described as follows. I obtain an

Area under curve (AUC) of 0.99 for C’s Receiver operating characteristic (ROC), Figure 5.5b

shows the ROC curve of C and Figure 5.5c gives the precision-recall curve. I validate C,
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on the augmented data obtained above, using a k-fold cross-validation (k=5). The C model

gives a mean accuracy of 0.68 and 0.96 on the seed and augmented training data respectively.

I report these performance metrics in Table 5.9 and Table 5.10 respectively, for the seed and

augmented training datasets. Based on these numbers, I infer that the classifier C is stable

and works well on the augmented data containing target datasets from Bipolar, Borderline,

and Control, without dropping accuracy in classifying the seed data of the 23 CampusLife

participants.

I apply the classifier C on the remaining held out target datasets (6,095 Bipolar users,

3,205 Borderline users, and 8,782 Control users), to machine label them. I report the distribu-

tion of the mood instability classifier C across the three target dataset samples in Table 5.11.

We observe that HighMI users occur in about 64% (out of 6,095), 62% (out of 3,205) and

37% (out of 8,782) of the users in Bipolar, Borderline and Control data samples respectively.

An independent sample t-test of the labeled users each from Bipolar and Borderline, with

Control shows statistical significance at the α=0.05/n (n=2) level, following Bonferroni

correction (ref: Table 5.12). In other words, these numbers indicate that the likelihood of

Twitter users self-reporting diagnoses about bipolar or borderline personality disorders

are almost twice as likely to exhibit high mood instability compared to those who do not

self-disclose of these conditions.

Validation of the Mood Instability Classifier

In order to validate the performance of the mood instability classifier C, I evaluate its accuracy

on an unseen MI labeled dataset of CampusLife participants. For the 10 participants, who

shared their public Twitter feeds within the CampusLife study, I infer the mood instability

(HighMI and LowMI) using classifier C. Comparing these inferred MI labels with the actual

labels of the participants, we observe that C correctly predicts the MI label of 9 of these 10

participants. This affirms the claim that C works satisfactorily across platforms and is able to

correctly infer MI in the population of college students based on their social media data.
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Table 5.13: Comparison of MI classification in the mental health Twitter datasets using the
seed classifier C0 and the semi-supervised learning based classifier C. The higher standard
deviation (stdev.) in the distribution of k-fold cross validation (CV) accuracies of classifier
C0 shows its high sensitivity (and therefore instability) across different folds.

Data ↓ k-fold CV accuracies of C0 (% HighMI) k-fold CV accuracies of C (% HighMI)

Folds→ 1 2 3 4 5 Mean Stdev. 1 2 3 4 5 Mean Stdev.

Bipolar 66.81 69.86 64.64 43.76 62.82 51.38 10.30 62.87 63.64 62.66 63.18 63.38 63.15 0.39
Borderline 61.37 63.81 54.41 34.04 56.13 45.06 11.76 61.06 61.81 62.44 62.84 62.31 62.09 0.68
Control 42.04 46.05 37.35 24.79 37.94 31.40 7.99 36.70 36.54 36.56 36.47 37.26 36.71 0.32

I evaluate how the mood instability classifier C improves over the performance of the

seed classifier C0. In particular, I compare the decision functions of C0 and C. A decision

function estimates the confidence score of a training sample, based on the distance of the

data points from the hyperplane in an SVM classifier [89]. These points are referred to as the

support vectors (in a vector space, a point can be thought of as a vector between the origin

and that point). In this case, the mean value of the decision function of C is 94% higher

(1.54 vs. 0.79) than that of C0, showing remarkably higher confidence in model fitting. This

suggests that classifier C performs better than C0 on an MI labeled dataset in terms of model

fit and confidence.

In addition, I compute MI in the unlabeled mental health Twitter datasets, using the

k-folds (k=5) of Classifier C0 and C. We observe that C0 shows an unstable performance

in terms of the accuracy metric, with a standard deviation of 10.3%, 11.8%, and 8.0% for

predicting the percentage of HighMI in Bipolar, Borderline and Control users. On the other

hand, C shows a comparatively stable performance for the same numbers with only 0.4%,

0.7% and 0.3% standard deviation in accuracies respectively. I summarize the comparison

values of the two classifiers in Table 5.13. Thus, while we do not see a drastic improvement

in classification accuracies between C and C0, these results demonstrate the stability of the

semi-supervised learning based classifier C especially in the face of limited availability of

ground truth labeled data.

153



Examining Psycholinguistic Features

To understand the prominent psycholinguistic features of the C classifier, Table 5.14 summa-

rizes the statistically significant features and their values for the two mood instability classes

HighMI and LowMI. Broadly, I note that the mean occurrences of each of the psycholinguis-

tic features is substantially higher in the timelines of users classified as HighMI as compared

to those inferred to show LowMI.

To start with, we observe that the features under affective attributes, especially anger,

negative affect, and positive affect show significant contribution towards the classification

model. This agrees with the intuition that, individuals having traits of mood instability are

likely to be expressive and use affective words. Looking at the class-wise differences in

Figure 5.6 which plots the distribution of affective features across individuals. For positive

affect, HighMI individuals show a substantial higher median than LowMI individuals (0.24

vs. 0.04). Likewise, a similar trend is observed for negative affect (0.20 for HighMI and 0.03

for LowMI individuals).

Returning to other psycholinguistic features described in Table 5.14, we find that cogni-

tive attributes like negation, discrepancies, cognitive mechanics, certainty and tentativeness

stand out, distinguishing the two mood instability classes. First, we observe that HighMI

users show greater usage of cognitive attributes and perception. This finding aligns with

prior work, which associates higher use of cognitive and perceptive words with emotional

upheavals, and self disclosure about psychological conditions [475]. Next, the HighMI users

show heightened self-attentional focus as illustrated in the usage of 1st person singular

pronoun features; this value is significantly lower in the case of the users classified to show

LowMI. Self pre-occupation is observed in individuals challenged with many mental health

concerns, who in turn, in many cases, may also exhibit high instability in their emotional

states [126]. In terms of temporal references, the HighMI users show a greater focus on here

and now, indicated in the high usage of present tense words. Further, the occurrences of

lexical density features such as verbs and adverbs in HighMI is almost 600% as compared in

154



1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f U
se

rs

Value

Anger

Low MI High MI

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f U
se

rs

Value

Positive Affect

Low MI High MI

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f U
se

rs

Value

Negative Affect

Low MI High MI

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f U
se

rs

Value

Anxiety

Low MI High MI

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f U
se

rs

Value

Sadness

Low MI High MI

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f U
se

rs

Value

Swear

Low MI High MI

Figure 5.6: A comparative representation of the distribution of the values of LIWC affective
attributes in users classified to be of HighMI or LowMI.

LowMI, indicating that individuals with higher mood instability tend to express themselves

via more complex narratives, as also known from prior work in psycholinguistics [126].

Analyzing Mood Instability on Twitter

The final set of results include an analysis of the linguistic markers of mood instability as

manifested in the target datasets from Twitter. Table 5.15 reports the top occurring, most

relevant n-grams (n=2) based on their Log Likelihood Ratio (LLR) across two classes. In

doing so, I also investigate whether and how the usage of different n-grams vary across

the classes of mood instability. We observe that certain n-grams reported here, agree with

the distribution of the psycholinguistic features that are significantly distinct across the two

classes. For instance, ‘argue’ which occurs predominantly in HighMI, is categorized under

the social and anger features in the psycholinguistic lexicon LIWC. In fact, these specific

features of anger and social occur almost 6 times more frequently in HighMI as compared
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Table 5.14: Psycholinguistic categories and their distribution across the two classes of
mood instability. Only significant features for classifier C are reported here, with their score.
Statistical significance is reported after Bonferroni correction (α = .05/50).

Category High MI Low MI p-value Score

Mean Stdev. Mean Stdev.

Affective Attributes
Anger 0.21 0.12 0.04 0.05 *** 33.37
Negative Affect 0.20 0.10 0.03 0.04 *** 31.51
Positive Affect 0.24 0.10 0.04 0.05 *** 35.46
Sadness 0.17 0.08 0.03 0.05 *** 13.57
Swear 0.17 0.14 0.02 0.05 *** 13.57
Cognitive Attributes
Causation 0.18 0.08 0.03 0.04 *** 26.38
Certainty 0.34 0.12 0.05 0.06 *** 50.81
Cognitive Mech 0.39 0.12 0.07 0.07 *** 60.86
Discrepancies 0.30 0.11 0.05 0.05 *** 47.91
Negation 0.33 0.12 0.05 0.06 *** 54.91
Tentativeness 0.20 0.09 0.03 0.04 *** 31.41
Perception
Feel 0.17 0.08 0.03 0.04 *** 24.32
Insight 0.16 0.07 0.03 0.04 *** 21.62
Percept 0.24 0.13 0.04 0.05 *** 40.48
See 0.13 0.07 0.02 0.03 *** 20.87
Interpersonal Focus
1st P. Singular 0.28 0.12 0.05 0.06 *** 46.90
2nd PP. 0.20 0.11 0.04 0.05 *** 26.69
3rd PP. 0.10 0.07 0.01 0.03 *** 15.70
Indefinite P. 0.36 0.12 0.06 0.06 *** 59.35
Temporal References
Past Tense 0.23 0.11 0.03 0.04 *** 39.71
Present Tense 0.41 0.12 0.07 0.07 *** 69.02
Lexical Density and Awareness
Adverbs 0.39 0.13 0.06 0.07 *** 65.03
Verbs 0.43 0.12 0.07 0.07 *** 70.77
Exclusive 0.33 0.12 0.05 0.05 *** 57.33
Inclusive 0.25 0.10 0.05 0.05 *** 37.68
Preposition 0.37 0.13 0.07 0.07 *** 56.78
Social/Personal Concerns
Bio 0.16 0.07 0.03 0.04 *** 21.52
Body 0.17 0.08 0.03 0.04 *** 25.97
Death 0.09 0.07 0.02 0.04 *** 12.98
Humans 0.13 0.07 0.02 0.04 *** 17.12
Sexual 0.12 0.11 0.02 0.04 *** 19.07
Social 0.300 0.11 0.05 0.06 *** 46.18

to LowMI. This indicates, users in HighMItend to be more expressive and argumentative on

social media, such as “We curse, fight, kiss, hug, We text, talk, argue, laugh, We smile, We

love. That’s just us!”. Similar is the case with ‘afraid’, which exists under the anxiety feature

in LIWC. We observe that a few phrases related to pregnancy and child birth, such as ‘baby

born’, ‘birth’, ‘feeding’ and ‘pregnant’ are predominant in HighMI. Some example tweets

include, “Everyones pregnant or married and I’m..”, “looking at my stomach, I can’t believe

I’m pregnant and I’m really having my own baby”, “hungry + sleepy is a bad combination
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Table 5.15: Log Likelihood Ratios (LLRs) of top 20 n-grams more frequent in the posts of
users classified as HighMI (left), LowMI (center) and comparably frequently in both (right).

n-gram (High>Low) LLR n-gram (Low<High) LLR n-gram (High=Low) LLR

argue 1 finance -1 followed people 0.03
awww 1 fountain pen -1 red 0.04
baby born 1 global investment -1 chocolate 0.04
birth 1 gus music -1 smile 0.04
eyebrows 1 profit -1 healthy 0.04
failed 1 health equity -1 unfollowed automatically 0.04
fall asleep 1 health money -1 followed 0.04
feeding 1 health money bitcoins -1 goodbye 0.04
funding 1 investment plan -1 learning 0.05
hip hop 1 irregular traffic -1 adorable 0.05
hurting 1 management -1 birthday 0.05
playing woman 1 millionaire -1 relationships 0.06
pregnant 1 pension -1 challenge 0.06
pressure 1 perfect money -1 holidays 0.06
racism 1 remixes -1 goodnight 0.06
republicans 1 single mother -1 magic 0.03
suicide 1 fastest investments -1 creative 0.02
fucked 0.41 equity careers -1 lips 0.02
racist 0.49 entertainer -1 thankful 0.01
favorite 0.47 download new -1 thanks 0.01

for a pregnant woman.” and “this baby hurting my damn back. im not having any more kids".

This concurs with prior literature, on the association of mood instability with pregnancy

related conditions [383]. We also observe the presence swear words, like ‘fucked’ and words

associated with highly negative depressive acts and forms of expression as well as low

self-esteem in HighMI, like ‘suicide’, ‘hurting’ and ‘failed’. Example tweets here include, “I

can’t believe my suicide is delayed” and “everybody likes hurting me all the time”

On the other hand, the top n-grams from LowMI, contain some health, career and

money related phrases like, ‘health money’, ‘finance’, ‘perfect money’, ‘entertainer’, ‘equity

careers’, ‘millionaire’, ‘pension’. This may indicate a tendency of LowMI Twitter users

to engage in discussing more general life and lifestyle oriented topics, such as in tweets

like, “what would you buy if you became a multi-millionaire overnight”. In other words the

lower presence of these n-grams in HighMI may indicate a relatively greater detachment of

these users from the day-to-day realm. In contrast to pregnancy related words in HighMI,

we find, ‘single mother’ occurs as a top n-gram in LowMI. Such a contrast interested us,

and as I drill down to the corresponding tweets, we find some expression of dis-inhibiting

opinions and disclosures relating to people’s personal lives, such as “my single mother
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worked without a penny from ‘him’ because she changed her lifestyle to be there for me.

the real sign of a mother.”, “of course a woman who was a poor single mother until she

worked her way out of poverty can’t possibly comment.”, “being a single mother works with

her being a really independent fierce woman who didn’t give up her motherhood for her”

and campaign oriented tweets such as, “retirement income plan for single mother”. Among

the n-grams which occur almost equally in both the classes, we find quite a few phrases

related to greetings, vacation and occasion, for example: ‘goodbye’, ‘thanks’, ‘birthday’,

‘goodnight’, ‘holiday’ etc. which are typically expected to surface in many casual social

media chatter.

5.1.4 Discussion

This study presented a novel machine learning approach for inferring psychological states

(mood instability) of an individual based on their social media data, leveraging dense, high

fidelity ground truth information from an independently acquired active sensor—specifically

ecological momentary assessments (EMAs). I demonstrated passively gathered social media

data can be utilized to build an enriched and scalable mood instability classifier.

The results show that the proposed semi-supervised learning approach makes significant

contributions towards exploring how very small samples of actively sensed data can be

augmented with large-scale social media data to detect individuals’ binary mood instability

status (low, high), robustly, with 96% accuracy and F-1 score. The proposed semi-supervised

learning method can detect high mood instability, that, in comparison to a suitable control

population, reveals meaningful linguistic ‘signatures’ in the social expression of Twitter

users who self-disclose to suffer from bipolar or borderline personality disorder. The method

indicates that the bipolar and borderline personality disorder populations exhibit high mood

instability, with almost twice the likelihood of a control population; an observation aligning

with relevant literature in psychology [22, 58, 141].

This study highlights an unconventional, yet creative mechanism to rethink certain study
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designs within the ubiquitous computing community. Many of these studies typically employ

sophisticated and highly engineered systems for sensing behaviors, moods, and activities

of individuals. Incentives are also needed to be built into the design to maintain participant

compliance while reducing burden. I show that with access to voluminous naturalistic social

and behavioral data gathered from social media unobtrusively and passively, these study

designs may be revisited. Existing sensing frameworks that employ small-scale active data

collection could thereby tackle the challenges of scalability to large populations and to

extended periods of time, by utilizing complementary social media data of the population

being studied. Moreover, unlike most active sensing paradigms, I demonstrate that with

social media data, we can leverage access to the rich context within which activities and

moods unfold and are expressed, such as their social and behavioral underpinnings. Such

information can be immensely helpful in many health sensing applications [3], beyond the

investigations presented in this paper.

By borrowing a semi-supervised learning approach from machine learning, this study

builds on the success of these methods [684]. While fully supervised approaches (e.g.,

regression and classification) are routinely used for health sensing [187, 652], this work

reveals that a semi-supervised approach can promisingly tackle the challenges around

paucity of labeled data (e.g., individuals suffering from a health condition), by incorporating

easily accessible unlabeled examples. Moreover, the findings suggest that a semi-supervised

classification approach improves the performance of a seed fully supervised classifier, both

in terms of robustness and confidence, indicating the applicability of the proposed approach

in real-world affect and mood inference tasks, beyond laboratory studies.

This methodology can be applied in a variety of other health sensing problems, especially

problems challenged by limited access to groundtruth. More generally, over half of American

smartphone users are reported to spend an average of 144 minutes per day browsing their

mobile devices, aiming to stay socially connected with their friends [262]. These users often

identify as quantified selfers, which includes tracking signals from a range of wearable
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sensors (such as heart rate, body acceleration or physical location). Given the popularity

of social media technologies, this study shows a mechanism to bridge the gap between

individuals’ online representation and actual physical and emotional status, and how they

can mutually benefit each other in health status sensing tasks.

Broadly, this study advances the vision proposed by Estrin [207] and Zhang et al. [681]

around developing approaches within the precision medicine context, that can integrate

multiple forms of technology facilitated sensed data into improved understanding of health

and wellbeing. The integration of EMA and social media technologies will enable us to

better understand the early signs that may indicate forthcoming risk to unusual shifts in

mood or another adverse health episode. To realize this goal, software infrastructures to

enable automated social media sensing of health, alongside other forms of sensing may be

developed, akin to the Aware [212] and SenSocial [412] frameworks that allows unobtrusive

logging of passive data centered around people’s smartphone activity. This study reveals

the potential of novel systems and interventions that can proactively monitor wellbeing

may be designed and deployed. These can be in the form of self-tracking tools that allow

self-reflection for individuals, or in the form of interfaces that could be used by clinicians

and caregivers so as to direct timely and personalized help [676].

The findings reveal that social media can function as a source of passively and unobtru-

sively sensed data to infer mood instability in individuals, and can significantly augment

existing small-scale active sensing techniques. The implications of this study are situated

within precision medicine, around how multisensor integration of signals relating to health

can improve the assessments and understanding of challenging mental health concerns.

Given the widespread adoption of social media technologies, this study bridges the gap in

observations between individuals’ online representation and actual physical and emotional

status, and how they can mutually benefit each other in health status sensing tasks.
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5.2 Leveraging Multimodal Sensing Data to Impute Missing Social Media Data

Understanding why and how individuals feel, think, and act is a key topic of interest among

researchers from a variety of academic disciplines, such as psychiatry, psychology, so-

ciology, economics, and anthropology [378]. Typically, studies of human behavior have

largely relied on self-reported survey data. However, these approaches bear limitations, for

example, survey data suffers from subjective assessments, recall and hindsight biases. Active

and passive sensing technologies overcome these challenges by recording psychological

states and behavior in-the-moment [96]. However, sensing-based approaches require diverse,

extensive, and rich data via multiple modalities to obtain comprehensive information about

an individual’s state and context [96]. In comparison to active sensing such as Ecological

Momentary Assessments (EMAs), passive sensing techniques mitigate the challenges of

compliance and response burden. However, passive sensing paradigms are typically limited

to capturing behaviral data only during the study or active data collection period [565]. Such

a drawback could be overcome by leveraging social media data, which is an inexpensive,

unobtrusive, and naturalistic means to gather both present and historical data of individu-

als [529]. Additionally, social media data is a form of verbal sensor to capture people’s

linguistic expressions, therefore, a complementary means to infer psychological dynamics

of individuals [166, 528, 564].

That said, the availability and quality of social media data widely vary on people’s

social media use. Passive consumption is often more prevalent than active engagement,

leading to sparsity in data over extended periods of time. Consequently, studies either

focus on a very active participant cohort — hurting generalizability and recruitment, and

introducing compliance bias, or disregard those with no or only limited social media data —

hurting scalability. Additionally, everybody is not on social media, and its use is typically

skewed towards young adults [479]. Yet, research may require to study demographics where

social media is less prevalent. Again, gathering social media data also presents engineering

161



challenges due to platform restrictions.

Therefore, this study aims to address the challenges of missing sensing streams (here,

social media) in multimodal sensing studies of human behaviors. This study is theoretically

grounded in the Social Ecological Model [102] that posits human behaviors have social

underpinnings, and are deeply embedded in the complex interplay between an individual,

their relationships, communities, and societies.

This study examines: How to leverage the potential of social media data in multimodal

sensing studies of human behavior, while mitigating the limitations of acquiring this unique

data stream? I address this question within the Tesserae project [406], a multisensor study

that aims to predict psychological constructs using longitudinal passive sensing data of 757

information workers.

Focusing on the participants whose social media data is not available, this study proposes

a statistical framework to model the latent dimensions which could have otherwise been

derived, had their social media data stream been available. Specifically, I impute missing

social media features by learning observed behaviors from other passive sensor streams

(bluetooth beacons, wearable, and smartphone sensors). I employ a range of state-of-the-art

machine learning models, including linear regressions, ensemble tree-based regression, and

deep neural network based regression. After demonstrating that the imputed social media

features closely follow actual social media features of participants (average correlation of

0.78), I evaluate the efficacy of the social media imputation framework. I compare pairs

of statistical models that predict a range of common (or benchmark) individual difference

variables (psychological constructs like personality, affect, and anxiety) — one set of models

being those that use imputed social media features alongside other passive sensor features,

and the other set that does not use these imputed signals. The findings suggest that the

imputed social media features significantly improve the predictions by 17%.

Summarily, this study shows that the proposed framework can augment the range of

social-ecological signals available in large-scale multimodal sensing studies, by imputing
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latent behavioral dimensions, when one sensor stream (that is, social media data stream)

is entirely unavailable for certain participants. I discuss the implications of this study as a

methodological contribution in multimodal sensing studies of human behavior, within the

sensing research community.

5.2.1 Study and Data

Our dataset comes from the Tesserae project that recruited 757 participants (section 4.1).

Note that this study was conducted while the participation was ongoing, so it uses data till

August 21, 2018. Randomly Randomly selected 154 participants were “blinded at source”

whose data was put aside only for external validation at the end of the study. This study only

concerns the data of the remaining 603 “non-blinded” participants in the study.

The dataset consists of 350 males and 253 females, where the average age is 34 years

(stdev. = 9.34). In education, the majority of the participants belong to have college (52%)

and master’s degree (35%) education level.

Passively Sensed Data. The participants were enrolled over 6 months (February to July

2018) in a staggered fashion, averaging at 111 days of study per participant. Table 5.16

reports the descriptive statistics of the number of days of passively sensed data that was

collected per participant through each of the sensor streams. Per participant, there is an

average of 42 days data through bluetooth beacons, 108 days data through wearable, and

101 days of data through a phone application.

Out of the 603 non-blinded participants, 475 authorized their Facebook data. This data

can be broadly categorized in two types—ones that were self-composed (e.g., writing a status

update or checking into a certain location), and ones that they received on shared updates

on their timeline. Comprehensively, Facebook data consists of the updates on participants’

timelines, including textual posts, Facebook apps usage, check-ins at locations, media

updates, and the share of others’ posts. The likes and comments received on these updates
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Table 5.16: Descriptive statistics of # days
data collected.

Type Range Mdn. Std.

Study Period 16:205 99 46.7
Bluetooth 1:159 37 32.6
Wearable 5:206 94 46.9
Smartphone 1:206 93 52.4
Social Media 110:4756 2923 1474

Table 5.17: Descriptive statistics of the Face-
book dataset.

Type Mdn. Std.

Likes Rcvd. 1,139 5,277.85
Comms. Rcvd. 316 1,383.69
Self-posts 137 511.80
Self-comments 55 334.16
Self-Words 2,374 13,718.56

Participants 
Type 1

Participants 
Type 2

Psychological 
Constructs

Actual 
Feature Set

Final 
Feature Set

Base Models (Who have social media data)

SS .X + X’ : Y1 1 1 1

Models (Who do not have social media data)
S .X : Y2 2 2

SS .X + X’ : Y2 2 2 2

Final Models (All participants)
Imputation Model 

Imp. X : X’

X’ : Imp(X )

1 1

2 2

S . (X + X ) : (Y + Y )3 1 2 21

SS . (X + X ) + (X + X’ ) : (Y + Y )3 1 2 1 1 1 2
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Figure 5.7: A schematic overview of the statistical models built to evaluate the effectiveness
of imputation.

on the participants’ timelines were also collected. Table 5.17 summarizes the descriptive

statistics of the Facebook dataset. Temporally, the data dates back to October 2005, and the

number of days of data per participant averages at 1,898 days — giving us a sense of the

historical data that Facebook allows us to capture.

5.2.2 Methods

Feature Learning Framework

I build a feature learning framework to address the challenge of missing social media data

for 128 participants. Figure 5.7 shows a schematic overview of the prediction models of

psychological constructs that are used to evaluate the effectiveness of the imputing missing

social media transformed features. I briefly mention the three algorithms that are consistently

used throughout the study.

Linear Regression (LR) Linear regression adopts a linear approach to model the relationship

between the independent and dependent variables [566]. Specifically, wherever applicable, I
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employ linear regression with L1/L2 regularization to prevent overfitting and to avoid bias

introduced due to the inter-dependence of independent variables [687].

Gradient Boosted Regression (GBR) Gradient boost technique conducts regression in the

form of an ensemble of weak prediction models, which are typically decision trees [199,

426]. It optimizes the cost function by iteratively choosing a function that points in the

negative gradient direction. This study uses gradient boost on an ensemble of decision tree

regressors, by varying the number of decision trees between 100 and 1000, with each tree of

maximum depth as 3.

Multilayer Perceptron Regression (MLP) Neural network regression suits in problems

where a more conventional regression model cannot fit a solution. I use the multi-layered

perceptron (MLP) technique that works in a feed-forward fashion (no cycles) with multiple

internal layers [522]. The model learns through a method called backpropagation [368], and

follows a fully connected (dense) deep neural network architecture. Wherever applicable, I

use two internal layers and tune the number of nodes in them between 36 and 216 for the

neural network regression models.

The above three algorithm choices are motivated by the fact that they essentially cover a

broad spectrum of algorithm families spread across linear regression, non-linear regression,

decision trees, ensemble learning, neural networks, and deep learning. I quantify the predic-

tion accuracy of psychological constructs as the Symmetric Mean Absolute Percentage Error

(SMAPE), which is computed as mean percentage relative difference between predicted

and actual values, over an average of the two values [316]. SMAPE values range between

0% and 100%, and lower values of error indicate better predictive ability. To obtain these,

I first divide their datasets into five equal segments, and then iteratively train models on

four of the segments to predict on the held-out fifth segment. I average the testing accuracy

metrics to obtain the pooled accuracy metrics for the above algorithms. I refer to this tech-

nique as pooled accuracy technique and the corresponding outcomes as pooled accuracy or

error measures. Within the training segments, I tune the hyper-parameters using a k-fold
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(c) MLP

Figure 5.8: Correlation distribution between PCA Components and Predicted PCA Compo-
nents of Facebook

cross-validation (k = 5) technique.

Baseline Prediction with Passively Sensed Data. I first seek to establish if the presence

of social media features improves prediction accuracy. On the same set of 475 participants

who have social media data, I compare two models of predicting psychological constructs

— 1) S1 uses 30 sensor features, and 2) SS1 combines 30 sensor features and 200 social

media features. Table 5.18 reports the relative decrease in error for SS1 compared to S1. The

relative decrease in error averages at 21% for LR, 26% for GBR, and 21% for MLP. In sum,

adding social media features improves the predictions by an average of 22.4% across all the

models and the psychological constructs.

Imputing Missing Social Media Features

The baseline prediction suggests that adding social media features indeed improves the

prediction task of the psychological constructs. However, about one-quarter of the partici-

pants do not have social media data (see section subsection 5.2.1). This restricts us from

leveraging a rich feature stream to predict such attributes for these individuals. To overcome

this constraint, this study aims at learning certain latent behaviors that I could have otherwise

inferred if I had access to their social media data.

I impute the social media features using the sensor features. For this, I build learning

models on the sensor stream of the social media participants to predict their latent social
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media dimensions. That is, for every 200 social media feature, I build a separate model that

uses the sensor features as the independent variables to predict the social media feature. I

adopt k-fold cross-validation based hyper-parameter tuning. I use LR, GBR, and MLP to

find the best algorithmic model, and quantify the pooled accuracy of the prediction models

in terms of Pearson’s correlation (r) between actual and predicted social media features.

Levene’s test between all the actual and predicted features reveals homogeneity of variance

in the feature set [443]. This statistically indicates that the imputed social media transformed

features are not arbitrarily generated.

Figure 5.8 plots the distribution of the pooled Pearson’s correlation (r) between the

actual and predicted values of social media transformed features. I find that the mean

correlation across the components is 0.22 in LR, 0.78 in GBR, and 0.67 in MLP. All of these

correlation measures are statistically significant at p<0.05. Comparing across the algorithms,

GBR performs the best in predicting the latent social media dimensions. For the rest of the

analyses, I use the GBR algorithm to impute the social media transformed features.

5.2.3 Results

Evaluating the Effectiveness of Imputation

Among 128 participants without social media data, I compare two prediction models of

psychological constructs— 1) S2 uses only sensor features of these participants, and 2) SS2

combines sensor features and imputed social media features (as obtained above).

I compare the accuracy metrics of S2 and SS2 to deduce if imputing the social media

features improves the task of predicting psychological constructs. Table 5.18 compares

the prediction errors (SMAPE) for the three algorithms that I run in each of the models

S2 and SS2. We find that for LR, the relative decrease in the error ranges between 6% (for

openness) and 17% (for positive affect), averaging at 11%; for GBR, the relative decrease in

the error ranges between 16% (anxiety) and 20% (extraversion), averaging 17%; and for

MLP, the relative decrease in the error ranges between 6% (extraversion) and 21% (anxiety).
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Table 5.18: Relative % decrease in SMAPE in prediction models using both sensor & social
media features from ones using only sensor features. Positive values mean better prediction
in SSn than Sn.

SS1-S1 SS2-S2 SS3-S3

Psy. Construct LR GBR MLP LR GBR MLP LR GBR MLP

Personality Traits (BFI-2)
Extraversion 10.6 28.4 16.6 8.4 20.1 6.4 12.8 19.5 3.6
Agreeableness 8.3 27.5 30.4 5.9 17.9 17.2 3.2 14.4 20.2
Conscientiousness 11.8 26.0 28.2 9.4 17.4 13.5 15.0 21.2 12.1
Neuroticisim 11.2 24.9 17.6 7.6 16.9 13.4 6.0 17.5 -13
Openness 10.0 25.1 33.8 6.1 15.6 16.9 5.4 15.3 3.1

Affective Measures
Pos. Affect 33.8 26.2 8.06 16.6 18.1 18.4 8.6 14.5 21.5
Neg. Affect 38.8 24.7 24.04 16.1 15.7 9.7 8.4 11.8 16.4
Anxiety (STAI) 39.4 24.3 7.5 14.1 15.7 20.8 6.4 16.8 34.4
Mean 20.5 25.9 20.8 10.5 17.2 14.5 8.2 16.4 12.3

Therefore, the imputed social media features improved the prediction by an average of 14%

across all models and measures.

Finally, on the entire dataset, I build two Final Models to evaluate the overarching

effectiveness of imputation— 1) S3 uses sensor features of all participants, 2) SS3 uses

Facebook features of all participants. In this model, for those who have Facebook data, I use

Facebook features, and for the rest, I use imputed Facebook features.

I compare the prediction accuracy of the SS3 and S3— this gives us an estimate of how

this sort of imputation framework influences the overarching task of predicting psychological

constructs in multimodal studies (see Table 5.18). We find an average improvement in

prediction by 8.2% in LR, 16.4% in GBR, and 12.3% in MLP.

Hypothesis Tests for Robustness

After evaluating the imputation models, I measure its robustness. I compare the effectiveness

of the imputed sensing stream against two other imputation approaches applied to those 128

participants without social media data.

Mean Imputation. This approach imputes social media features as the mean value of the

corresponding feature sets. I build prediction models of psychological constructs as described

in the previous subsections. This method draws on prior studies which adopted similar
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Figure 5.9: (a&b) SMAPE of prediction models with sensor features (S3) vs. those with
sensor and (a) mean- and (b) random- imputed features, (c) Reduction in SMAPE in several
permutations of randomly imputed social media features compared to S3.

approaches of imputing missing features using static measures of central tendencies, such as

mean or median of the feature sets [184].

Randomized Imputation. This approach imputes the social media transformed features as

random values from the corresponding feature sets. I repeat such a randomization for a 1000

times, and in each case compare the prediction with Final Model S3. This method emulates

a permutation test [17], and checks for robustness of the imputation effectiveness, by testing

the null hypothesis that randomly imputed sensor streams are better than that imputed by

the statistical framework.

Figure 5.9 shows the SMAPE of these models compared to S3. While the imputation

shows an average improvement in SMAPE by 16% on the Final Model (S3) (see Table 5.18),

the same improvement for Mean Imputation-based model is -3.10% and Randomized Impu-

tation-based model is 5.34%, suggesting minimal (or no) improvement in these two models.

Permuting on the randomized imputations a thousand times, we observe that in terms of

prediction error, the imputations are never outperformed by the randomized imputations in

those thousand permutations. Essentially, this rejects the null hypothesis that our imputation

is only more effective than randomly generated imputations by chance.

In conclusion, the findings reveal that passively sensed multimodal data streams can

be used to not only impute latent social media dimensions, but also to augment these

latent features in building better prediction models that infer psychological constructs.
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We consistently observe similar trends in the improvement of prediction accuracies by

integrating the social media features (both actual and imputed) with the sensor-transformed

features.

5.2.4 Discussion

Theoretical and Practical Implications. This study proposes an analytical framework of

imputing a missing sensing stream (here social media) in multimodal sensing studies. We

evaluate the effectiveness of this imputation by predicting psychological constructs through a

variety of state-of-the-art algorithms. At a higher level, the imputation framework is grounded

on the Social Ecological Model that construes interdependence among individuals, their

behavior and their surroundings and environment [548, 647]. This implies its applicability

not only in theory but also in practice (context and activity as captured and observed

through passive sensing modalities). Our findings reveal the robustness of imputation by

comparing with permutation tests and random- and mean- imputation. Such a framework

can potentially be used in studies where there is similar theoretical grounding (around a

focus on comprehensive social ecological signals), and an opportunity to infer psychological

attributes.

The findings suggest that integrating social media features improves the prediction

of psychological constructs. This aligns with prior work on the potential of social media

(both individually as well as in tandem with other passive sensors) in predicting these

measures [166, 529, 564]. However, social media data may not be available for the partici-

pants. the proposed imputation method addresses this gap by computing latent social media

dimensions, which can be used to improve such machine learning-based prediction tasks of

human behavior.

Following this framework, existing datasets that include multimodal sensing, but do not

have social media streams for some participants, can now be retrained for better predictions.

While this study only focuses on predicting psychological constructs, the same method can
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be extrapolated to predict other measures of human behavior as well. Not being limited to

a single algorithm, the framework shows the consistency in the findings across a variety

of algorithm families. It is not constrained by the choice of machine learning algorithms,

which typically vary depending on the characteristics of the dataset and the distribution of

the individual difference variables.

Additional sensing streams and features can be plugged into the framework. However, it

remains interesting to study whether the additional sensors improve the imputation models.

For instance, sensing technologies that capture conversations [499] among individuals in

social settings would plausibly improve predicting latent social media features, on the

rationale that it captures another set of dimensions in the social ecological framework —

offline social interactions.

Ethical Implications. This study cautions against its misuse as a methodology to surveil

or infer individual behaviors. This study intends to model latent dimensions that can assist

prediction tasks in multimodal sensing studies, by being internal to the pipeline of the

prediction system. However, these latent dimensions do not necessarily translate to or are

indicative of actual individual behaviors on social media, and therefore such inferences

cannot be drawn from the imputed social media features about the individuals.

This study does not unpack why some participants did not share social media data. It

could be because they do not use social media, or because they do not intend to share for

privacy reasons. Whether social media features should be imputed for these individuals can

constitute a debated topic. This is because such an imputation approach, when applied to

make predictions of sensitive individual difference variables and incorporated into larger

systems (e.g., targeted advertising), can be perceived as a violation of the very privacy

considerations that spurred them to not share social media data in the first place.
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CHAPTER 6

INTROSPECTING INTO ONLINE-DATA-DRIVEN OFFLINE INFERENCES

So far, I highlighted the potentials of social media in inferring wellbeing. However, we

need to recognize that these computational assessments have several potential real-world

consequences. For example, these assessments may be instrumented in taking high-risk

decisions, such as hiring or firing employees at workplaces. Therefore, we need to be careful

about these assessments, and meaningfully understand what we are measuring. In this regard,

this chapter aims to investigate and interpret the online-data driven offline metrics.

The first study examines how we can conduct person-centered predictions using social

media data by leveraging multimodal sensing to contextualize the offline contexts of individ-

uals. This paper aims to balance the trade-off between one-for-each and one-for-all models

by clustering individuals on mutable behaviors and conducting cluster-specific predictions

of psychological constructs. This work begins with a hypothesis that complementing social

media with data with offline sensor data can help to personalize and improve predictions.

However, the findings reveal mixed observations with respect to significant improvement

in certain psychological constructs (e.g., sleep quality) and no improvement in others (e.g.,

cognitive ability). This study reveals the importance of taking a critical stance on evaluating

the effectiveness before investing efforts in personalization.

The second study examines the characteristics of and factors explaining life event

disclosures on social media. In particular, as social media platforms continue to evolve

as archival platforms where individuals disclose several aspects of their lives for support,

solidarity, maintaining and gaining social capital, and meeting therapeutic needs. I study

what life events are disclosed on the year-long Facebook data of individuals in comparison

to their self-reported life events in the same period. This study contributes a codebook to

identify life event disclosures and builds regression models on event-centric and individual-
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centric factors that are associated with life event disclosures. The findings reveal that while

all life events may not be disclosed, online disclosures reflect complementary information

to self-reports. This study bears practical and platform design implications in providing

support and sensitivity to life events.

6.1 Contextualizing Person-Centered Predictions with Social Media

The past few years have increasingly seen several passive sensing approaches to improve

our understanding of human behavior both longitudinally and scalably. Simultaneously,

research has utilized ubiquitous social media platforms as a “passive sensor” [529] and an

unobtrusive source of behavioral data, which is self-recorded and self-initiated by individuals

in naturalistic settings. Because this data contains language and social interactions, it is

a unique form of verbal and social sensor, unlike several physical sensing modalities. A

large body of research reveals the potential of inferring psychological constructs with social

media [166, 252, 564].

However, social media data may not include the valuable contextual information that

drives posting behaviors. For instance, even within the same emotional state, Facebook

posting varies across individuals [399]. This interaction of various factors underscores the

idea of the Social Ecological Model [102] in which psychological constructs are embedded

in a complex interplay between individual, social, and environmental factors. Posting (or

not posting) can be dictated by external factors that vary for every person. Therefore,

social media sensing is unique in its sensitivity to factors driving an individual’s self-

initiation, motivation, and presentation. This between-person variability in data may impact

predictions of an individual’s underlying psychology, routines, and other personal attributes.

Incorporating additional offline context that captures factors affecting online behavior could

boost the ability of social media to predict individual outcomes.

Personalizations, where models are tuned and optimized for each individual [524]

can overcome between-subject variability. Indeed, personalized modeling methods are
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gaining attention in the disciplines of social science, psychology, and health, including

precision medicine and digital phenotyping [294, 309, 364, 454, 467]. Person-centered

methods can glean a more comprehensive understanding of an individual, and in some

cases explain their outcomes better than variable-centered or generalized methods (i.e.

focusing on global variables that are measured through the same means for everyone in a

target population) [391, 527, 670]. A variety of personalized predictions have also been

conducted in computing, particularly in content recommendation and data mining [576].

Drawing on such approaches, we can consider predictions by building individual-level

models. However, such approaches would be impeded due to the temporal sparsity of

social media data (because individuals post on social media only at discrete intervals).

Alternatively, we can consider stratifying individuals on demographic attributes such as age,

race, and gender. However, these attributes are not only privacy-intrusive but are also static

and exclusionary. Demographic attribute-based stratified modeling has been identified by

the Fairness, Accountability, Transparency literature to reinforce stereotypes and existing

societal biases, and even exacerbate them [292, 314, 498]. Additionally, these approaches

may not have sufficient data for a particular demographic or marginalized group. Using

dynamic features shared more broadly can be a better alternative.

This study avoids demographic based and personalized modeling shortcomings by

embracing multimodal sensing in capturing behavior and context, in the form of “small

data” about a person [207]. I propose a person-centered approach that leverages passively

collected dynamic attributes spanning phone use, physical activities, mobility, and work

behaviors. Data is collected from Bluetooth beacons, smartphones, and wearables. We

then obtain clusters (or groups) of individuals who demonstrate similar combinations of

multidimensional offline behaviors. Clustering individuals is theoretically motivated in

that people’s offline behaviors drive online (or social media posting) behaviors and vice-

versa. Clustering allows to balance within-individual heterogeneity and between-individual

homogeneity. This approach is a middle-ground between “one-for-each” and “one-for-
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all” models, thereby aiming to balance the drawbacks of extremely personalized (one

or few individuals per model) which may not generalize or consolidate findings across

individuals, and extremely generalized models, which face difficulty in generating precise

predictions per individual and can also be impeded by variability in individual data quality

and completeness. This study draws motivation from clustering based approaches previously

adopted in digital phenotyping research with electronic health records to identify comorbidity

of symptoms [188] and to compare and summarize clinical models [248].

This study broadly hypothesizes that contextualizing on offline and naturalistic behaviors

can provide a degree of personalization and improve predicting psychological constructs

with social media. Combining multiple sensing modalities in this manner can allow us

to leverage complementary strengths of different sensing techniques. Additionally, this

approach can provide a theoretical lens of understanding the interaction between offline and

online behaviors that is useful in both research and in practice. This study, therefore, targets

the below research aims:

Aim 1: To predict psychological constructs with social media in a person-centered approach

of contextualizing people’s offline physical behaviors.

Aim 2: To evaluate and compare contextualized and generalized prediction models.

Aim 3: To examine how social media language associates with offline behaviors.

I use data from the Tesserae project [406], where 572 participants provided social media

(Facebook) data. Consented participants provided self-reported measures of psychological

constructs of cognitive ability, personality traits, affect, and wellbeing, which serve as

ground-truth in this study. I use this data to achieve the aims above, through three-fold

contributions:

First, this study contributes an approach of building contextualized person-centered

models that predict psychological constructs from naturalistic passive data describing a

multitude of contextual factors. I build contextualized models trained on each cluster’s social
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media data and compare the performance against generalized models trained on the entire

social media dataset of all participants, as is typically done.

Second, this study provides insights about the relative performance of predicting psy-

chological constructs with generalized and contextualized models. The evaluations reveal

that contextualized predictions show a significant increase in predicting anxiety, sleep, and

personality traits, whereas no significant difference in predicting affect, and a significant

decrease in predicting cognitive ability.

Third, I critically discuss the tradeoff between personalization and statistical power, and

the importance of evaluating the costs and benefits of personalizations as implications in

research and practice. This study construes that the utility of contextualizing on offline be-

havior for social media based predictions relies on the strength of the theoretical associations

between a construct of interest and offline manifestations of the construct. Additionally,

personalized models are not only costly but may also be impacted by the limitations as-

sociated with smaller training data sizes compared to generalized models. Theoretically,

this work can be useful in behavioral modeling in emergent fields like human-centered

machine learning, as well as to generate hypotheses for future investigations that leverage

the relationship between passively sensed behavior and psychological constructs.

6.1.1 Study and Data

The data for this study comes from the Tesserae project (section 4.1) [406].

Self-Reported Data

The enrollment process consisted of an initial survey questionnaire related to demographics

(age, gender, education, type of occupation, role in the company, and income), and survey

questionnaires of self-reported psychological constructs of cognitive ability, personality

traits, affect, anxiety, and sleep quality. Table 6.1 summarizes the distribution of the self-

reported data within the dataset, where we find a reasonable distribution within demographics
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and psychological traits among the participants.

Figure 6.1 presents Pearson’s r between the psychological constructs (Cognitive Ability,

Personality Trait, and Affect and Wellbeing variables) and regression (R2) results for the

demographic and job-related characteristics as independent variables, and the psychological

constructs as dependent variables. These correlations between psychological constructs,

mirror prior literature. The observed positive correlation (r=0.79) between Neuroticism

and Anxiety and Negative Affect is consistent with past research showing positive asso-

ciations between elevated Neuroticism and mood and anxiety disorders [456]. The strong

positive correlation (r=0.67) between Anxiety and Negative Affect is consistent with past

research showing a strong co-morbidity between depressed mood and elevated anxiety [457].

Extraversion and Positive Affect (r=0.54) have also been found to be strongly positively

correlated [385, 386]. Other past research has also found a negative association (r=−0.51)

between Positive Affect and Anxiety [81], as well as a negative association (r=−0.41)

between Conscientiousness and Anxiety [209]. All other inter-construct correlations are

moderate at |r|<0.40. Next, looking at the association between demographic and job related

variables and the psychological constructs, we observe only modest associations, with the

strongest association being between Income bracket and the Shipley Crystallized Vocabulary

scale (R2=0.05). When all demographic and job-related variables are included in a regres-

sion model predicting the psychological constructs, we still observe only modest predictive

performance for all psychological constructs (all R2<0.12).

Passive Sensing Data for Offline/Physical Activity

This study collected offline/physical behaviors of individuals through three modalities of

passive sensing, bluetooth beacon, wearable, and smartphone.
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Table 6.1: Descriptive statistics of self-reported demographics and psychological constructs
of participants.

Covariates Value Type Values / Distribution

Demographic Characteristics
Gender Categorical Male | Female

Age Continuous Range (20:68), Mean = 34.90, Std. = 9.74
Education Level Ordinal 5 values [HS., College, Grad., Master’s, Doctoral]

Job-Related Characteristics
Income Ordinal 7 values [<$25K, $25-50K, ... , >150K]
Tenure Ordinal 10 values [<1 Y, 1Y, 2Y, ... 8Y, >8Y]
Supervisory Role Boolean Non-Supervisor | Supervisor

Cognitive Ability (Shipley scale)
Fluid (Abstraction) Continuous Range (0:24), Mean = 16.98, Std. = 2.84
Crystallized (Vocabulary) Continuous Range (0:40), Mean = 33.15, Std. = 4.11

Personality Trait (BFI scale)
Openness Continuous Range (1.17:5), Mean = 3.82, Std. = 0.61
Conscientiousness Continuous Range (1.42:5), Mean = 3.88, Std. = 0.66
Extraversion Continuous Range (1.58:5), Mean = 3.42, Std. = 0.69
Agreeableness Continuous Range (2.08:5), Mean = 3.89, Std. = 0.56
Neuroticism Continuous Range (1:4.92), Mean = 2.46, Std. = 0.79

Affect and Wellbeing
Pos. Affect Continuous Range (13:50), Mean = 34.53, Std. = 6.05
Neg. Affect Continuous Range (10:43), Mean = 17.52, Std. = 5.35
Anxiety Continuous Range (20:72), Mean = 38.13, Std. = 9.49
Sleep Quality Continuous Range (0:19), Mean = 6.65, Std. = 2.59

Social Media Data

Among the social media data streams, Facebook is the most popular social media plat-

form [262], and that its longitudinal nature has facilitated several social media studies of

understanding individual differences [164, 399, 529], it suits the particular problem setting.

Facebook is also the most prevalent social media stream in the dataset, with 572 partici-

pants authenticating their Facebook data, among which 32 participants have no entries in

their Facebook data — this study uses the remaining 540 participants’ Facebook data for

measuring psychological constructs.

6.1.2 Feature Engineering

I derive machine-usable features from the raw multimodal sensing data. I draw on prior

work to derive features that have shown theoretical relevance in measuring psychological

constructs [651, 653]. This section explains the features: first, those derived from physical
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Figure 6.1: (Left): Pearson’s r between psychological constructs, non-significant correlations
(p>0.05) are left as blank.
(Right): Regression (R2) results for the demographic and job-related variables as independent
variables, and the psychological constructs as dependent variables (right sub-figure). The
“All Variables” column provides regression results for the psychological constructs with all
demographic and job-related variables included in the model.

sensors, followed by those derived from social media.Out of the 757 participants’ data, I

set aside a random sample of 6.7% (50) participants’ data as the held-out dataset for final

evaluation purposes. I conduct feature engineering, and build (train and validate) the models

within the remaining 93.3% (704) participants’ data.

Deriving Features from Physical Sensor Dataset

From the passive sensor data streams, I derive a variety of features that are related to

participants’ activity, sleep, and other physical behaviors, as summarized below:

Step Count The Garmin wearable collects fitness-related measures such as the daily step

count of participants [234].

Physical Activity The smartphone app installed on participant smartphones used the

Google Activity Recognition API [255] to identify physical activity at regular intervals. For

each individual, I obtain durations of (1) high and (2) moderate intensity activities using the

Metabolic Equivalent of Task metric from the wearable data [637].
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Mobility The smartphone application continually recorded the GPS coordinates of the

individuals. I derive the number of locations and the distance traveled between each location

based on a 15-minute pooling window. I use this data to also derive (1) information on the

total distance traveled each day, (2) the number of distinct locations visited, and the (3)

maximum and (4) average distance from home traveled by an individual each day.

Phone Use Activity The installed smartphone app recorded the activity of smartphone

locks or unlocks. I derive the (1) number of phone locks and unlocks, and (2) the average

duration of time between phone locks and unlocks each day.

Desk Activity The Bluetooth beacons in conjunction with the smartphone application

captured the presence of individuals (e.g., at work/home locations). I derive several daily

features about activity patterns at work and home each day, including (1) time at work,

(2) minutes at desk, (3) mean desk session duration, (4) median desk session duration, (5)

percent of time at work spent at desk, (6) and the percent of time of the 24 hour day spent at

work. I also compute break session information, i.e. the intervals between the participant’s

desk beacon being out of range and the desk beacon appearing within range. Specifically, I

compute daily counts of break sessions at three different interval measures: (7) number of

5-minute breaks, (8) number of 15-minute breaks, and (9) number of 30 minute breaks.

Sleep The wearable sensed the sleep activity of the individuals [234]. Wearables can

accurately detect sleep [341, 686]. This measurement was improved by further accounting

for phone use and wearable-derived bed times, wake times, and sleep duration drawing on

Martinez et al. [400]. In addition to collecting daily measures of (1) bed time, (2) wake

time, and (3) sleep duration using this method, I also derive duration measures directly

from the wearable for (4) light sleep, (5) deep sleep, and (6) Rapid Eye Movement (REM)

sleep [396]).

To compute physical sensor features for clustering the participants into different behav-
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ioral contextualizations, I calculate the mean (µ) and standard deviation (σ) of each daily

measure described above, for each individual. In addition to µ and σ features, I also compute

features characterizing the regularity of each measure using Recurrence Quantification

Analysis (RQA) [660]. RQA estimates the number and duration of occurrences of a dynamical

system presented through a phase space trajectory [660]. Regularity measures derived from

multimodal sensing data have shown valuable utility in predicting psychological traits [653].

In particular, I obtain features using RQA for the recurrence rate, which represents the

probability that a specific state will occur, and can be interpreted as the repetitiveness of

the elements in a given sequence (i.e. the repetitiveness of values across the days for which

data was collected). RQA is computed using three parameters: (1) the delay parameter τ ,

which is the delay unit by which the series is lagged, the dimension embedding D, which is

the number of embedding dimensions for phase reconstruction, i.e. the lag intervals, and

the radius R, which is the threshold cut-off constant used to determine if two points are

recurrent or not. For each daily sensor measures series, I use the method recommended by

Wallot [649] to compute the optimal parameters for each series, I computing the optimal

parameters for each individual, and then using the mean value from this distribution of

parameters to apply to the sensor measure stream. Among the RQA features, I could not

attain useful features for mean and maximum average distance from home, as these RQA

features show almost no variability across the participants, and hence, I discard them from

the final feature set. From mean, standard deviation, and RQA aggregation methods, I obtain

a total of 76 behavioral features for all participants.

Deriving Features from Social Media Dataset

Longitudinal Social media data of individuals is self-recorded in naturalistic settings. This

data also enables us to obtain historical behavior of participants, i.e., from before study

participation. Drawing on prior work [162, 166, 531, 533, 564], I obtain a variety of features

from the Facebook data of the participants, and summarize them below.
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Psycholinguistic Attributes A number of prior work in the space of social media and psy-

chological wellbeing [166, 564] have used psycholinguistic attributes in building predictive

models. On the Facebook posts of the individuals, I use the well-validated Linguistic Inquiry

and Word Count (LIWC) lexicon [613] to extract a variety of psycholinguistic categories

(50 in total). These categories consist of words related to 1) affect (categories: anger, anxiety,

negative and positive affect, sadness, swear); 2) cognition (categories: causation, inhibition,

cognitive mechanics, discrepancies, tentativeness); 3) perception (categories: feel, hear,

insight, see); 4) interpersonal focus (categories: first person singular, second person plural,

third person plural, indefinite pronoun); 5) temporal references (categories: future tense, past

tense, present tense); 6) lexical density and awareness (categories: adverbs, verbs, article,

exclusive, inclusive, negation, preposition, quantifier); 7) personal and social concerns

(categories: bio, body, death, health, sexual, achievement, home, money, religion, family,

friends, humans, social).

Open Vocabulary n-grams Open-vocabulary based approaches can infer psychological

constructs of individuals [564]. I obtain the top 5000 n-gram (n = 1, 2, 3) from the dataset

as features.

Sentiment An important dimension in the language expressed on social media is the tone

or sentiment of a social media post, which has also been used to understand psychological

constructs and shifts in mood of individuals [252, 529]. I use the Stanford CoreNLP library’s

deep learning based sentiment analysis tool [393] to identify the major sentiment of a post

among positive, negative, and neutral sentiment labels.

Latent Lexico-Semantics (Word Embeddings) Word embeddings are vector representa-

tions of language in latent semantic dimensions, enabling us to capture the lexico-semantics

of language on social media. Prior work reveals that word embeddings can improve several

natural language analysis and classification problems [155, 476, 544]. I use pre-trained
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word embeddings (GloVe [476]) on an internet corpus of 6B tokens in 50-dimensions to

characterize the social media posts of the participants in a 50-dimensional feature space.

Social Capital Social capital is an important aspect and contributor in shaping the lives

and behaviors [599]. Drawing on prior work [164], I obtain features quantifying social

capital of the individuals based on social media interactions and engagement. I use regular

expression based pattern matching to identify individuals’ updates relating to 1) check-ins to

places (or locations visited), 2) posts of status updates, 3) upload of media (photo or video),

4) spend time (or an occasion) with other people (or friends), 5) change in relationship

status and 6) use of apps (such as games or quizzes on Facebook). For each of these social

attributes, I compute the number of updates, frequency of updates, and the number of likes

and comments received in them.

In total, 5,127 derived features are obtained corresponding to each participant on their

social media data.

6.1.3 Aim 1: Contextualizing and Predicting Psychological Constructs

This study focuses on predicting psychological constructs with social media data. Social

media use and expressiveness may not only vary significantly across individuals, but also

are also driven by offline factors. Therefore, contextualizing on offline behaviors may make

models better adapted to the social media signals predictive of psychological constructs per

individual. As briefly introduced before, I take a middle-ground approach between fully

individualized and fully generalized prediction models, which aims to capture between-

individual homogeneity and within-individual heterogeneity. Intuitively speaking, given the

sparsity of social media data, for an individual, whose social media data of certain behaviors

or moments is “missing” (or lack of within-individual heterogeneity in data), we could

fill these gaps by capturing the data from other similar individuals (between-individual

homogeneity); here the similarity is captured via offline behavioral clustering.
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Figure 6.2: A Schematic diagram comparing generalized prediction with social media data
and the person-centered approach by contextualizing offline behaviors.

To do so, I cluster individuals on the basis of offline physical behaviors (e.g. sleep, work,

phone use, physical activity) captured from sensors on Bluetooth beacons, wearables, and

smartphones. Then, I build cluster-specific prediction models of psychological constructs,

where each cluster-specific model uses the social media data of participants only within the

corresponding cluster. Figure 6.2 schematically summarizes the contextualized prediction

approach in comparison to generalized prediction approach with social media data.

Clustering Individuals on Physical Sensor Behavior

To categorize the participants into different clusters based on their behavioral features, I

first perform data imputation and feature selection to reduce missing values and feature

redundancy. Feature selections and feature transformations are important preliminary steps

for any machine learning problem to overcome problems of multi-collinearity, co-variance,

etc. among the features — issues that can potentially affect downstream prediction prob-

lems [186]. In particular, because the features are derived from multimodal data streams,

there is a high likelihood many of the features are already related, are redundant, and/or

show extremely high variance and lack predictive power [497]. For example, the activity

and stress-related features as captured by the wearable, are both intuitively and theoretically
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correlated [234].

Starting with 76 physical sensor features for 704 participants in the training and val-

idation data as explained in the previous section, I impute any existing missingness (as

is common in any longitudinal and large-scale data collection) in the data by using mean

imputation per feature. Next, I conduct step-wise removal of multi-collinear features by

calculating the variance inflation factor (VIF) of features against each other [154, 419]. I

eliminate correlated features that show a VIF higher than 5, reducing our feature set from

76 down to 46 features.

Building Clustering Models On the above finalized training and validation dataset, I

apply four clustering algorithms to obtain the optimal arrangement: K-means, partitioning

around medoids (PAM) [632], and two versions of hierarchical clustering. While both

hierarchical clustering methods use Wards method for agglomeration between clusters [656],

the first method (hclust1) uses Ward’s approach on the two observations and/or clusters

which were recently merged when updating the distance matrix, while the other method

(hclust2) uses Ward’s approach on all observations in the merged clusters, i.e. using less

shortcuts when updating the distance matrix.

For each clustering algorithm, I test cluster arrangements ranging from 2 to 8 clusters,

using the mean Silhouette score [521], Dunn index [190], and the connectivity of the clusters

(i.e. the degree of connection within the clusters, measured by k-nearest neighbors) [288]

to determine the most optimal clustering arrangement. Table 6.2 presents the results of the

clustering tests by varying parameters. I find that the most optimal clustering arrangement

in terms of mean Silhouette score and Dunn index is hclust2 with 2 clusters, however, a

close second is hclust2 with 3 clusters, where the connectivity score is slightly higher but the

mean silhouette score is slightly lower (0.26 vs. 0.27). As the primary research goal is to

investigate the utility of building separate social media based models based on contextualized

behavioral information about individuals, rather than a rigorous evaluation the most optimal
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Table 6.2: Comparing goodness of fit metrics for clustering methods and parameters (Number
of clusters, Silhouette score, Dunn index, and Connectivity). The green highlighted row is
the finally used clustering approach.

# Clusters Sil. Score Dunn Idx. Connectivity

K-Means
2 0.11 0.09 381.27
3 0.04 0.09 431.09
4 0.05 0.09 463.40
5 0.06 0.10 446.15
6 0.04 0.08 576.84
7 0.05 0.08 609.36
8 0.05 0.07 618.97

Partitioning Around Medoids (PAM)
2 0.03 0.09 223.37
3 0.02 0.09 454.82
4 0.03 0.09 473.11
5 0.02 0.09 521.16
6 0.01 0.09 584.95
7 0.02 0.09 585.91
8 0.01 0.09 599.11

# Clusters Sil. Score Dunn Idx. Connectivity

Hierarchical 1 (distance on recent two observations)
2 0.23 0.13 214.92
3 0.02 0.10 406.09
4 0.02 0.10 443.02
5 0.03 0.10 453.82
6 -0.03 0.05 584.50
7 -0.03 0.05 626.90
8 -0.02 0.05 632.54

Hierarchical 2 (distance on all observations)
2 0.27 0.14 149.10
3 0.26 0.14 151.66
4 0.05 0.10 350.83
5 0.03 0.10 454.58
6 0.04 0.10 455.95
7 0.04 0.10 459.50
8 0.04 0.10 462.36

clustering arrangement of the dataset, I consider that having more individualization in

behavioral categories might provide a better evaluation of the theoretical approach. I proceed

with the analysis and model building using the hclust2 clustering algorithm with 3 distinct

clusters.

Describing Clusters on Physical Behaviors Applying the hclust2 clustering algorithm

with three distinct clusters to the training and validation subset, we find Cluster C1 to have the

majority of the participants (N=601, 85%), while Cluster C2 has N=76 (11%) participants,

and Cluster C3 has N=27 (4%) participants. To better understand how the clusters differed

among the behavioral features we generated, we apply the Kruskal-Wallis H-test to each of

the 46 behavioral features with the responding variable as the behavioral feature, and the

independent variable as the cluster membership category. We use the Kruskal-Wallis H-test

as the cluster sizes are very different in size, and therefore we cannot likely assume a normal

distribution of the feature values within each cluster. Table 6.3 reports the top 20 behavioral

features with significant H-statistic values from the tests.

We find many regularity (RQA-based) features in the top 20 features. Regularity in

minutes at desk per day, desk session duration, REM sleep duration, and number of phone

186



Table 6.3: Mean z-scores per cluster for top 20 significant features as per Kruskal Wallis
H-test used for clustering. Statistical significance reported after Bonferroni correction (***
p < .001, ** .001 < p < .01, * .01 < p < .05).

Features C1 C2 C3 H-stat.

Phone Use
Regularity of Number of Phone Unlocks per day -0.15 1.09 0.33 63.12***
Regularity of Duration Spent with Phone Unlocked per day -0.15 1.12 0.22 38.38***
Mean Number of Phone Unlocks per day 0.06 -0.38 -0.19 20.83**
Work Behaviors
Regularity of Minutes at Desk per day -0.17 0.12 3.46 79.72***
Regularity of Mean Desk Session Duration -0.14 0.10 2.88 74.34***
Regularity of Median Desk Session Duration -0.14 0.02 2.95 60.73***
Regularity of Percent Time Spent at Work per day -0.14 0.03 3.07 70.84***
Mean Percent of Time at Work Spent at Desk 0.08 -0.03 -1.55 47.62***
Stdev. of Time at Work Spent at Desk 0.07 -0.11 -1.24 20.00**
Sleep
Regularity of Total REM Sleep Duration per night -0.18 1.44 -0.10 76.27***
Mean of Total REM Sleep Duration per night 0.13 -0.91 -0.32 54.48***
Stdev. of Total REM Sleep Duration per night 0.14 -0.98 -0.24 37.68***
Regularity of Total Deep Sleep Duration per night -0.17 1.26 0.13 32.52***
Regularity of Nightly Bed Time -0.03 0.38 -0.33 32.03***
Mean of Total Light Sleep Duration per night 0.11 -0.89 0.02 27.60***
Stdev. of Nightly Bed time -0.07 0.23 0.88 18.07**
Physical Activities
Regularity of Steps Count per day -0.11 0.85 -0.01 51.58***
Regularity of Total High/Strenuous Activity Duration per day -0.14 1.08 -0.06 46.92***
Regularity of Total Activity Duration per day -0.14 1.13 -0.03 30.70***
Mobility
Mean of Total Distance Travelled per Day 0.05 -0.33 -0.41 14.55*

unlocks are strong explanatory features to distinguish the three clusters. To investigate more

specifically how the top features differ across each cluster, we transform the values for these

features into z-scores within the entire participant set — Table 6.3 also provides the mean

z-scores. z-score transformations are not sensitive to absolute values and measure the raw

value in terms of standard deviations above or below the mean. I observe differences in C3

compared to C1 and C2 for a number of the features, primarily with respect to work behaviors.

Participants in C3 had much higher daily regularity in minutes at their work desk per day

(mean z=3.46) than those in C1 (mean z=−0.17) or C2 (mean z=0.12), but also on average

spent a much lower percentage of their workday at their desk (mean z=−1.55) compared to

those in C1 (mean z=0.08) or C2 (mean z=−0.03). I also observe distinct differences in C2

compared to C1 and C3 with respect to sleep patterns. Participants in C2 had more regularity

in nightly seconds of REM sleep (mean z=1.44) compared to C1 (mean z=−0.18) or C3

(mean z=−0.10), but also had a lower average in nightly seconds of REM sleep (mean

z=−0.91) compared to C1 (mean z=0.13) or C3 (mean z=−0.32).
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Examining Clusters On Demographic Composition I examine the demographic com-

position of each cluster. Creating separate participant clusters based on behavioral features

might be similar to directly clustering on demographic information. For instance, older

adults are known to be more sedentary [88], and factors like age and gender have been

shown to explain daily smartphone usage [21]. As this study focuses on the utility of build-

ing person-centred models based on passively sensed behavioral data, rather than static

demographic information, it strives to have the clusters to have heterogeneous demographic

compositions.

To test the heterogeneity of the demographic composition across clusters, I perform χ2

tests between the clusters and the categorical demographic variables (Gender, Education

Level, Income, Tenure, and Supervisory role), and a one-way ANOVA test between the clus-

ters and age (the only numeric demographic variable). The tests reveal no significant associa-

tion between the clusters and Age (χ2(2)=0.91, p=0.63), Gender (χ2
Pearson(2)=3.06, p=0.22),

Income (χ2
Pearson(12)=10.99, p=0.53), Supervisory Role (χ2

Pearson(2)=3.72, p=0.16), and

Tenure (χ2
Pearson(18)=19.97, p=0.34). While this shows a weak significant association be-

tween the clusters and Education (χ2
Pearson(8)=17.25, p=0.03), the effect size is very small

(V̂Cramer=0.08). I observe slight compositional differences in Education in C3, such that

there are proportionately more participants with High school as the highest level of education

(7%), compared to C1 (1%) and C2 (0%). C3 also has proportionately less participants with a

College degree as the highest level of education (44%), compared to C1 (55%) and C2 (54%).

However, these significant demographic differences are relatively negligible and only occur

for education. Therefore, I conclude that the clusters are much more strongly separated by

the passive behavioral features than by demographic information.

Predicting Psychological Constructs with Social Media

I use the features described in Section subsection 6.1.2 to predict self-reported psychological

constructs (Table 6.1). For each psychological construct, I build two kinds of models: 1)

188



generalized models which are built on the entire dataset of all participants, 2) contextual-

ized models which are separately built per behaviorally contextualized clusters. Here, the

generalized prediction models emulate typical practices of predicting behavioral attributes

with social media data, whereas the clustered models are more person-centered driven by

incorporating people’s offline behaviors (passively inferred via physical sensors).

I use k-fold cross-validation (k=5) for parameter tuning and evaluation with pooled

accuracy technique on the training and validation subset of the data, i.e., for each model, I

first divide the dataset into five equal segments, then iteratively train models on four of the

segments to predict on the held-out fifth segment, and finally collate all the predicted values

together and compare their collated against actual values using Pearson’s correlation (r) and

Symmetric Mean Absolute Percentage Error (SMAPE). I adopt several prediction algorithms

spanning across linear regression (with and without L1, L2 regularization), gradient boosted

random forest (GBR), support vector regressor (SVR), and multilayer perceptron (MLP).

I also transform the social media feature set using Principal Component Analysis (PCA)

with a singular value decomposition solver, selecting the number of components on the

basis of explained variance [297]1. However, prediction models using PCA transformed

features show no improvement over those using raw features (no-PCA transformation),

likely because language and n-gram features are inherently sparse and contain predictive

information despite the variance and sparsity. The remaining paper concerns analyses with

raw features, which serves an additional advantage of feature interpretation and model

explanation with respect to contextualization.

To verify that the training models do not overfit, I also apply the cross-validated and

trained models to the held-out unseen subset of the data (N=50) to test performance on unseen

data (introduced at the beginning of Section subsection 6.1.2). I derive the 46 physical sensor

features for the held-out data, and apply the same trained hclust1 model to obtain cluster

1The Appendix Table B.3 and Table B.4 show the performance of modeling with PCA-transformed features.
Qualitatively, these predictions show similar comparison directions between generalized and contextualized
models as observed in models with non-transformed features.
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labels for the held-out data. I again evaluate the relative performance of the generalized and

contextualized models on the held-out data.

6.1.4 Aim 2: Evaluating Performance of Contextualized and Generalized Models

On the best performing algorithm for generalized and contextualized prediction models

from the above, I compare the performance metrics of these predictions for the cross-

validated evaluation with the training data (Table 6.4, detailed metrics in Appendix, Table B.1

and Table B.2), and for the held-out data (Table 6.5). To measure statistical significance in

prediction differences, I conduct t-tests using the dependent overlapping correlation method,

which controls for comparing against a common variable of interest (here, each psychological

construct) [191]. I observe that the efficacy of contextualizing on offline behavior for social

media based predictions can be explained by the theoretical associations between the

construct and its offline manifestations. I now discuss the performance of the models, and

ask: When does contextualization help? Are there any cases where contextualization does

not improve over generalized models?

Cognitive Ability

I use the Shipley scales to obtain ground-truth measures of two kinds of cognitive ability.

The Shipley (Abstraction) scale measures fluid cognitive ability, which is how one thinks

logically, reasons, and problem solves in novel situations. The Shipley (Vocabulary) scale

measures crystallized cognitive ability [578], or an individual’s grasp of general and cultural

knowledge including verbal communication [103]. These two abilities mutually interact and

combine to form overall individual cognitive ability [313].

Table 6.4 and Table 6.5 compare the best predictions as per generalized and clustered

models in the cross-validated evaluation and held-out data respectively. In the case of

abstraction, there is no significant difference in the performances of generalized and clustered

models. However, in the case of vocabulary, there is a statistically significant difference
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Table 6.4: Cross-validated Evaluation: Comparing the accuracy metrics of best performing
generalized and contextualized prediction models. Statistical significance is computed using
t-test as per dependent overlapping correlations [191] on predictions by generalized and
contextualized models for each construct. For significant rows, pink bars indicate a decrease
in performance in contextualized models compared to generalized models and green bars
indicate an increase in performance (*** p<.001, ** .001<p<.01, * .01<p<.05).

Construct Generalized Contextualized Comparison

r SMAPE r SMAPE ∆r % ∆SMAPE % t-stat.
Cognitive Ability
Shipley (Abstraction) 0.25 6.81 0.23 6.88 -8.00 1.03 -1.73-

Shipley (Vocabulary) 0.29 4.13 0.21 4.25 -27.59 2.91 -4.82***
Personality Traits
Openness 0.25 6.89 0.29 6.08 14.81 -11.76 1.94*
Conscientiousness 0.13 7.29 0.19 7.08 46.15 -11.76 2.80**
Extraversion 0.17 8.54 0.21 8.46 23.53 -0.94 1.70*
Agreeableness 0.17 5.84 0.19 5.89 11.76 0.86 0.88-

Neuroticism 0.12 13.56 0.18 13.09 50.00 -3.47 2.50*
Affect and Wellbeing
Pos. Affect 0.13 7.10 0.14 6.90 7.69 -2.82 0.56-

Neg. Affect 0.11 10.90 0.13 10.89 18.18 -0.09 -1.13-

Anxiety (STAI) 0.12 9.66 0.21 8.51 75.00 -11.90 5.61***
Sleep Quality (PSQI) 0.15 16.02 0.25 10.59 66.67 -33.90 5.07***

(t=-4.61), where the generalized model performs 27.6% better in r and 2.41% better in

SMAPE in the cross-validated evaluation. I observe similar prediction results in the held-out

data, where the generalized model performs 29.41% better in r and 8.41% better in SMAPE.

However, the difference in the held-out data is not quite significant (t=-0.99, p=0.08), likely

due to the smaller sample size.

The above suggests that clustering individuals on physical and offline behaviors does not

add any new information in predicting cognitive ability. I construe that more heterogeneity of

individuals in training sample and larger size of data are in fact stronger factors in predicting

cognitive ability, likely because language is known to be a correlate of cognitive ability,

more strongly in the case of crystallized cognitive ability (vocabulary) [556].

Personality Traits

Personality traits are considered to be robust and parsimonious correlates of a variety of

individual outcomes, characteristics, behavior, and abilities [355]. I find that in both the

cross-validated evaluation and the held-out data, contextualized predictions perform sig-

nificantly better for Openness, Extraversion, and Neuroticism. Contextualized predictions
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Table 6.5: Held-out data: Comparing the accuracy metrics of best performing generalized
and contextualized prediction models. Statistical significance is computed using t-test as per
dependent overlapping correlations [191] on predictions by generalized and contextualized
models for each construct. For significant rows, pink bars indicate a decrease in perfor-
mance in contextualized models compared to generalized models and green bars indicate
an increase in performance (*** p<.001, ** .001<p<.01, * .01<p<.05).

Construct Generalized Contextualized Comparison

r SMAPE r SMAPE ∆r % ∆SMAPE % t-stat.
Cognitive Ability
Shipley (Abstraction) 0.36 4.52 0.33 5.03 -8.33 11.28 -0.36-

Shipley (Vocabulary) 0.34 4.65 0.24 5.04 -29.41 8.40 -0.99-

Personality Traits
Openness 0.51 5.00 0.79 4.23 66.67 -15.40 4.00***
Conscientiousness 0.19 6.87 0.21 6.06 10.53 -11.79 1.26-

Extraversion 0.19 7.71 0.32 6.88 68.42 -10.77 2.57**
Agreeableness 0.38 6.51 0.62 5.81 63.16 -10.75 3.77***
Neuroticism 0.12 12.86 0.63 11.11 425 -13.61 7.95***
Affect and Wellbeing
Pos. Affect 0.30 9.20 0.60 8.54 100 -7.17 2.57***
Neg. Affect 0.20 11.33 0.42 10.87 110 -4.06 2.25***
Anxiety (STAI) 0.14 11.57 0.33 8.78 135.71 -24.11 1.14*
Sleep Quality (PSQI) 0.16 16.49 0.41 12.33 156.25 -25.23 2.27*

of Conscientiousness perform significantly better in cross-validated evaluation, (t=2.80)

without a significant difference in performance in the held-out set (t=1.26, p=0.21). Con-

versely, contextualized prediction for Agreeableness does not perform significantly better

in the cross-validated evaluation (t=0.88, p=0.38), but prediction is significantly better in

the held-out set (t=3.70). Despite these inconsistencies in statistical significance, there is a

general trend towards increased performance in contextualized predictions for Conscien-

tiousness and Agreeableness. The inconsistencies in statistical significance for improved

Agreeableness predictions with contextualized models partially aligns with prior meta-

analysis of physical activities and personality traits that found Agreeableness to show the

least significant relationship with physical activities [505]. Note that the participant pool is

drawn from information workers, and certain activities such as work behaviors and phone

use have been found to be direct correlates of traits like Neuroticism [154], so capturing

such information during clustering (Table 6.3) may have contributed to the effectiveness

of person-centered models. I construe that driving contextualized models through physical

behavior based clusters likely allows to capture distinct linguistic features per cluster that

are better predictive of personality traits.
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Affect and Wellbeing

The contextualized models reveal no benefit for predicting positive or negative affect in the

cross validation data set, though a significant benefit is found in the held out data.. This

inconsistency suggests that there is inconclusive evidence whether clustering individuals on

their physical activities or offline behaviors contributes new information in the prediction

of affect. It is likely that offline behaviors might not provide enough new information for

predicting more moderate constructs of day-to-day affect like those measured with the

PANAS scale.

However, for anxiety and sleep quality (PSQI), there are large and significant improve-

ments for the contextualized predictions over generalized models in both cross-validated

and held-out evaluations. I conjecture that these improvements are due to strong correlations

between physical behaviors and sleep quality and anxiety. For instance, the duration of deep

sleep is known to have a significant effect on reported sleep quality [116], while improved

physical activity has a long-established relationship in reducing subjective anxiety [60].

Although extreme affective disorders like depression (which is often comorbid with anxi-

ety) [253] are known to have relationships with offline behaviors like sleep and mobile phone

use [616], offline behaviors might not provide enough new information for predicting more

moderate constructs of day-to-day affect like those measured with the PANAS scale. I note

that the clustering approach includes features obtained using wearables and smartphones,

both of which capture behaviors correlated with sleep (e.g., accelerometer data, phone use,

etc.), likely helping the contextualized predictions of sleep quality.

Robustness of Contextualized Person-Centered Approach

I test for empirical robustness of the contextualized person-centered approach against typical

approaches of using physical sensor features for prediction (Ms models), as well as using all

(physical sensor and social media) features together, i.e., a multisensor feature fused model

(Mms models). I conduct similar rigorous model and parameter tunings as above, and obtain
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Figure 6.3: Comparing performance (r) various modeling approaches for predicting psycho-
logical constructs.

the best models of predicting the constructs. Appendix Table B.5 and Table B.6 present the

detailed prediction results for Ms and Mms models respectively, and Figure 6.3 presents a

summary view of prediction performance comparison across various modeling approaches.

For the Ms models, the prediction performance is considerably worse than contextualized

models for all psychological constructs, with the strongest prediction from any Ms model is

for Extraversion (r=0.17, SMAPE=8.41).

I find that the best Mms models of cognitive ability perform as similar as generalized

social media models, and better than contextualized models for both abstraction (r=0.25,

SMAPE=6.66) and vocabulary (r=0.28, SMAPE=4.10). For personality traits, I find that Mms

performs similarly or worse than contextualized models in openness (r=0.26, SMAPE=6.40),

conscientiousness (r=0.17, SMAPE=7.86), extraversion (r=0.17, SMAPE=8.35), agreeable-

ness (r=0.17, SMAPE=5.91), and neuroticism (r=0.11, SMAPE=12.93). For affect and well-

being, Mms performs similarly in positive (r=0.13, SMAPE=6.77) and negative (r=0.13,

SMAPE=11.18) affect, and significantly worse in anxiety (r=0.13, SMAPE=16.07) and sleep

quality (r=0.21, SMAPE=14.02). Together, this suggests that the approach of person-centered

contextualization not only mines signals in the multimodal sensing data better, but also
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likely filters out noisy information from user groups whose behavior is too far away from the

average group. Further, the person-centered contextualization approach provides additional

theoretical interpretation and explanation which I elaborate further in the following sections.

In addition, I also target rejecting the null hypothesis that any prediction improvement

by the contextualization approach is by chance or any random cluster-label assignment.

Drawing on permutation test approaches [17, 537], I permute (randomize) the cluster label

of all individuals, and repeat the entire pipeline predicting of psychological constructs.

I run 1,000 such permutations, and I find that the probability (p-value) of improvement

by a random-cluster assignment over contextualized approaches is almost zero across all

the measures (p=0.002 for abstraction, p=0.001 for positive affect are the only non-zero

probabilities). This rejects the null hypothesis and provides additional statistical significance

and credibility to the person-centered approach of contextualization using offline behavioral

clustering.

6.1.5 Aim 3: Offline Contextualization and Social Media Language

The sensitivity of social media data to people’s unique characteristics and variable social

media use motivates us to study person-centered contextualized predictions. I have already

proposed and validated an approach to contextualize social media predictions of psycho-

logical constructs by clustering people on offline behaviors (Aim 1 and 2). Next, I interpret

the same clusters in terms of people’s social media use. Our third research aim targets un-

derstanding how the social media language varies by the clusters. I investigate if clustering

individuals on offline behaviors leads to clusters of individuals who also have different

online behaviors.

To understand the language differences better, I first interpret the composition of clusters

on psychological constructs which can help us validate the theoretical foundation of building

person-centered models on contextualized offline behaviors. Then, for each cluster, I obtain

salient language use and interpret that with respect to cluster composition in offline behaviors,

195



C1 C2 C3

Shipley (Abs.)

Shipley (Voc.)

Openness

Conscientiousness

Extraversion

Agreeableness

Neuroticism

Pos. Affect

Neg. Affect

Anxiety (STAI)

Sleep (PSQI)

−1.0

−0.5

0.0

0.5

1.0

Figure 6.4: Heatmap representing the clusters on mean psychological constructs. Values are
z-transformed per measure.

psychological constructs, and the literature.

Interpreting Cluster Composition on Psychological Constructs

I examine the between-cluster differences in psychological constructs (or the outcome

measures). Figure 6.4 shows z-transformed representation of the mean composition of

each cluster per construct. At a mean-aggregated level, C1 shows the greatest average

conscientiousness (µ=3.89, σ=0.66) and agreeableness (µ=3.90, σ=0.57). C2 shows great-

est average positive affect (µ=35, σ=5.89), negative affect (µ=17.49, σ=4.97), and anxi-

ety (µ=38.76, σ=10.49). C3 shows greatest average cognitive ability in both abstraction

(µ=17.41, σ=2.61) and vocabulary (µ=33.41, σ=3.84), openness (µ=3.9, σ=0.41), neu-

roticism (µ=2.49, σ=0.76), and self-reported sleep (µ=7.03, σ=2.92), while showing low

affective traits.

For all measures, Kruskal-Wallis H-tests across clusters show no statistical significance,

which could mean that each cluster is already composed of heterogeneous psychological

traits. This within-cluster variation in psychological constructs suggests that clustering on

offline (dynamic) behaviors does not necessarily translate to clustering individuals with only

“similar” psychological constructs. For each cluster and psychological construct, I compute
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Table 6.6: Comparing psycholinguistic attributes across clusters. Statistical significance
reported after Bonferroni correction (*** p < .001, ** .001 < p < .01, * .01 < p < .05).

Category C1 C2 C3 H-stat.

Affect
Anger 0.04 0.41 0.29 46.48***
N. Affect 0.15 0.26 0.39 28.46***
P. Affect 0.32 0.62 0.55 105.52***
Sadness 0.14 0.21 0.29 18.42***
Cognition
Causation 0.19 0.42 0.25 53.01***
Certainty 0.11 0.54 0.19 81.71***
Cog. Mech. 0.51 0.69 0.55 46.03***
Inhibition 0.27 0.41 0.20 22.11***
Discrepancies 0.15 0.48 0.27 81.84***
Tentativeness 0.24 0.59 0.30 65.10***
Perception
Feel 0.14 0.40 0.46 79.17***
Hear 0.11 0.41 0.31 64.18***
Insight 0.22 0.57 0.41 74.12***
Percept 0.20 0.55 0.57 94.32***
See 0.10 0.34 0.59 90.77***

Category C1 C2 C3 H-stat.

Interpersonal Focus
1st P. Sing. 0.20 0.26 0.43 23.74***
1st P. Plu. 0.05 0.37 0.42 78.10***
2nd P. 0.12 0.39 0.27 77.64***
Indef. P. 0.35 0.40 0.54 19.92***
Lexical Density and Awareness
Adverbs 0.30 0.52 0.54 86.57***
Article 0.28 0.64 0.49 110.01***
Verbs 0.42 0.59 0.61 64.05***
Aux. Verbs 0.25 0.57 0.54 98.30***
Conjunction 0.27 0.63 0.61 107.54***
Exclusive 0.33 0.52 0.45 39.65***
Inclusive 0.30 0.67 0.58 104.74***
Preposition 0.37 0.58 0.77 111.5***
Negation 0.09 0.21 0.19 51.07***
Quantifier 0.16 0.52 0.17 66.07***
Relative 0.22 0.71 0.56 127.55***

Category C1 C2 C3 H-stat.

Temporal References
Future Tense 0.10 0.31 0.58 100.78***
Past Tense 0.18 0.34 0.37 73.22***
Present Tense 0.34 0.54 0.66 79.73***
Personal and Social Concerns
Achievement 0.24 0.52 0.45 82.62***
Bio 0.08 0.31 0.54 98.16***
Body 0.02 0.29 0.38 78.54***
Family 0.09 0.13 0.22 28.11***
Friends 0.05 0.19 0.24 69.43***
Health 0.14 0.30 0.28 33.43***
Home 0.05 0.14 0.14 69.07***
Humans 0.08 0.19 0.49 81.18***
Money 0.06 0.46 0.30 83.66***
Religion 0.08 0.20 0.19 14.02***
Social 0.33 0.60 0.46 81.78***
Work 0.09 0.31 0.32 107.08***

the coefficient of variation (cv) [208], expressed as a percentage in the ratio of standard

deviation to mean of a distribution, and quantifies the amount of variability with respect to

the mean of the distribution — higher values indicate higher variability. The cluster-wise

cv is on an average 7% lower compared to the entire (non-clustered) data’s cv across all

the measures. Together, this suggests that clustering finds a compromise in both preserving

and reducing the variability in training data compared to the entire data. Methodologically,

the within-cluster heterogeneity in outcomes plausibly helps the data within-clusters to be

neither too biased (if only predicting homogeneous or skewed distribution of labels), nor too

varianced (predicting high variance distribution of label, e.g., the entire data), thus helping

the predictive performance of psychological attributes, as noted in Section subsection 6.1.4.

Examining Social Media Language Differences across Clusters

Next, I investigate how offline contextualization leads to groups of individuals with different

social media use, and what are the likely theoretical interpretation of such groupings in

terms of understanding psychological constructs. I base this examination on the differential

psycholinguistic usage of individuals. I measure the statistical difference in language using

Kruskal-WallisH-test. Table 6.6 characterizes the clusters on psycholinguistic use categories
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which show significant differences as per Kruskal-Wallis H test. The average standard

deviations across the categories are 0.12 for C1, 0.16 for C2, and 0.16 for C3. I discuss this

below.

Although Cluster C1 is the largest (468 individuals), it shows the lowest standard

deviation (0.12), suggesting that this cluster is psycholinguistically least heterogeneous. C1

shows the lowest use of all psycholinguistic attributes, suggesting that these individuals are

typically less expressive on social media. An alternate explanation would be C1 represents

the more common language use on social media — language containing lesser presence

of non-content words (articles, prepositions, etc.) that is known to be associated with less

complex language [613]. Moreover, the low mean in psycholinguistic attributes could also

be associated with high mean conscientiousness of C1 (Figure 6.4), aligning with prior

findings on social media language and psychological traits [564]. Similarly,examining C1’s

offline behaviors (Table 6.3) shows these individuals typically score low on the regularity

based features (work behaviors, sleep, and physical activities), suggesting that the relative

heterogeneity of offline behaviors, does not translate to online behavior and social media

expressiveness. Physically, C1 travels the most (high mean total distance travelled per day),

which suggests interesting associations between their offline mobility and online posting

behavior, as has also been noted in prior work [333].

Cluster C2 shows the greatest use of anger and positive affect, and all cognitive at-

tributes, suggesting these individuals have an average high emotion on social media language.

Interestingly, the same cluster’s composition showed high average affect and anxiety traits

(Figure 6.4), suggesting that individuals with higher affect traits are likely to be more expres-

sive with affect and emotional language on social media. These individuals have a high use of

function words such as articles, auxiliary verbs, conjunction, inclusive, exclusive, quantifier,

and relative. Function words are strong linguistic markers of understanding psychological

processes [475]. These individuals also show a high use of achievement and money related

language, which may be associated expressiveness about their career and self-actualization.
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The observations reveal plausible connections between these psycholinguistic trends and

the behavioral sensing features which best separated the clusters (see Table 6.3), e.g., the

greatest use of health words may be associated with high physical activities shown by

them [14]. Additionally, C2 has an average low duration of REM sleep per night, more

regular daily exercise patterns, and more regularity in time spent with their phone unlocked

per day, possibly because participants might be more driven for achievement in social, work,

or athletic goals, sometimes at the expense of their sleep quality [553].

Cluster C3 shows the greatest use of pronouns, with pronoun use associated with

narrative language and interpersonal discourse on social media [475]. For instance, the

greater use of first person singular pronouns (e.g. "I", "me") suggests narrating personal

experiences and self-reflection, and that of first person plurals (e.g. "We", "Us") indicates

narrating experiences as collective identities [126]. These individuals also score high on the

use of language related to social concerns and relationships such as family, friends, home,

and humans. I again see plausible connections between these psycholinguistic trends and

the behavioral sensing features which best separate the clusters. C3 has on average more

regularity in the percent of time they spent at work and desk each day. Regularity in work

and at desk suggest these participants might prefer a more regular daily work schedule to

balance a need for a more consistent family or social life outside of work.

The above cluster-wise decomposition on social media language reveals how people’s

offline behaviors can help us group individuals who are also separated in social media lan-

guage. Further, the analyses in Aim 1 and 2 also reveals how this approach helps improving

predictions of psychological constructs, particularly those that bear strong associations with

physical behavior (e.g., sleep quality). While it is intuitive that offline dynamic behaviors

indeed drive online behavior, there is a paucity of theoretical evidence [14]. This study

sheds light on this important aspect and opens up opportunities for future explorations of

understanding human behavior.
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6.1.6 Discussion

This study adopted machine learning and statistical modeling approaches to contextualize

social media predictions of psychological constructs. I first clustered individuals on physical

activities as captured by passive sensors and then built cluster-specific prediction models

of psychological constructs. The effectiveness of such an approach varies by construct,

suggesting that personalization is only better than generalization in specific circumstances. In

fact, clusters based on dynamic offline behaviors were not only heterogeneous in static traits

(Section paragraph 6.1.3 and subsubsection 6.1.5), but were also separated on social media

language use (Aim 3). This study is grounded on the Social Ecological Model that individual

behaviors are influenced by factors related to an individual and their context [102]. Beyond

just an evaluation of predictive performance, this study provides insights applicable to studies

grounded in similar theoretical settings where there is a need to focus on comprehensive

social ecological signals, and an opportunity to infer behavioral and psychological attributes

of individuals.

Theoretical and Methodological Implications

Beyond Traditional Forms of Personalization Recent research in applied computing

has highlighted the value of personalizations via “one-size may not fit all” arguments, as

all individuals are not the same and have different experiences [524, 670]. This has also

motivated various ubiquitous computing research in personalizing interactive, informatic,

and intervention systems [125, 156, 374, 376]. While person-centered analyses have been

studied in other disciplines such as social science, psychology, and health [309, 364, 670],

such analyses remain under-explored in computational assessments despite the abundance

of data. A close application is personalized content recommendation systems [576]. These

personalizations have typically relied on a single modality of data (e.g., historical content

browsing), along with demographic and static information. Relying on isolated modalities

are limited by several blindspots that challenge the comprehensibility of the models, such as
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the varying data quality across individuals. Importantly, collecting demographic information

not only removes user anonymity and threatens data privacy, which is a growing public

concern in social media use, but also can promote bias, exclusion, and stereotypes [314].

The implications of this study situate that with recent research revealing that behavioral

predictions can sway away from demographic- and static data, by only accounting for

short-term and behavioral data [154, 534].

Further, based on the examination of the association between demographic information

and target constructs (see Figure 6.1), it is not readily evident that demographic information

would provide more accurate predictions. In contrast, this study leverages naturalistic be-

havior collected via multimodal sensing to guide person-centered analyses. In comparison

to stratifications on demographics and static traits, or other forms of strata assumptions,

passive sensing allows us to cluster individuals on physical behaviors, which is robust

and dynamic. The efficacy of person-centered models is plausibly explained by the notion

that sensing streams both independently, as well as in conjunction can predict the con-

structs in consideration [268, 511, 595, 651, 653]. This study applies new ways of thinking

about person-centered approaches in human-centric, context-aware, and social sensing and

applications requiring personalized attributes.

Complementary Prediction Approaches this study contributes to the body of litera-

ture studying the complementary advantages of variable-centered and person-centered

approaches in various social science and psychological constructs [364]. Person-centered

approaches allow investigating individual attributes with precision and personalized context-

adaptation. The improved predictions are likely due to personalized training datasets by

stratifying individuals on their lifestyle and offline behaviors, rather than relatively less

helpful demographic information. On the other hand, no difference in performance could

be either due to better statistical power of larger training data or due to no added signal in

personalized training data. The findings support Howard and Hoffman’s study that deter-
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mined no single approach whether generalized or person-centered can be considered to be

the “best”, and it depends on the particular problem of interest and research setting (here,

contextualizing predictions on offline behaviors) [309].

Trade-off between Statistical Power and Personalization social media data is sensitive

to people’s self-presentation, context, and other factors, thereby making it harder for gen-

eralized prediction models that target behaviors of average populations. Moreover, given

that social media data is characteristically sparse (both within and between individuals), it

may not be ideal for fully-individualized models. This study overcomes these challenges by

using data from offline behaviorally similar individuals, thereby increasing the training data

compared to complete personalization while preserving the personalization aspect. However,

the training data size in contextualized models is still smaller than that of generalized

models. Therefore, this study posits that personalized research requires a consideration of

the trade-off between statistical power against the personalization component of predictions.

This trade-off would likely arise in any kind of personalized predictions, and potentially

builds on the classical “bias-variance trade-off” in machine learning predictions [54] —

over-personalized models can be too biased, whereas over-generalized models can suffer

from variance in the dataset.

Generating New Hypotheses This study allows generating hypotheses on the relationship

between human behavior, psychological constructs, and personalized predictions. These

hypotheses can guide us to explore newer questions on what factors make some attributes

personalizable, and how between-individual homogeneity and within-individual hetero-

geneity of information can serve as either a noise or a signal in such predictions. Example

hypotheses guided by the findings are, 1) social media sufficiently predicts attributes related

to cognitive ability, 2) physical behaviors may not be as effective as social media in predict-

ing affect, 3) social media data needs to be complemented with offline data to accurately

predict a physical measure such as sleep quality, and so on.
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Implications for Researchers and Practitioners

This study demonstrates the efficacy of person-centered predictions of psychological con-

structs (cognitive ability, personality, affect, and wellbeing) by using complementary ubiqui-

tous technologies. This study takes a critical stance to reflect upon conducting personalized

predictions in practice.

Trade-offs between Generalized and Personalized Models Contextualizing social me-

dia predictions using passively sensed offline behavior allows us to go beyond the more

common, user-profiling like approaches on demographic information based on one’s age,

race, and gender, which are not only less-robust, but also could lead to misleading findings

or “stereotypy” about particular demographic groups. On the other hand, building personal-

ized prediction models with dynamic and mutable behaviors demands additional overhead,

including and not limited to obtaining an individual’s multiple modalities of data which is

both longitudinal and dense.

This study provides insights on what kind of measures may or may not be personalizable.

Personalized prediction is considered a useful approach for improving user experience and

understanding human behavior in a variety of problem settings, however, personalization

is costly in terms of statistical power and effort. One way to navigate through that is to

conduct pilot studies with a small number of participants’ data and groundtruth measures,

before investing and implementing these approaches at scale. Such approaches can identify

an appropriate granularity of an effective personalization, and sensors are most likely to

improve predictions of a particular construct. Indeed, more data does not necessarily lead to

better predictions as found in this study. For instance, researchers interested in social media

and cognitive ability could use this study as evidence that social media data is sufficient,

and predictions would not be improved by additional effort spent collecting passive sensor

data and clustering on it.
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Considerations for When to Personalize When considering person-centered predictions,

one should consider the need and means. Here, social media data is sensitive to an individ-

ual’s choice of social media use and expressiveness. This study was theoretically motivated

in that social media activity is a function of people’s offline behaviors and therefore clustered

individuals on these behaviors for the analyses. A similar analog of data sensitivity and

variability in quality in case of other sensors could be compliance (e.g., use and non-use

of a wearable), and attributes that may drive compliance may be accounted for to cluster

individuals.

In parallel, the theoretical motivation of personalizing with respect to a construct is

also important to consider. For instance, in precision medicine or when dealing with health

constructs, it could be critical to conduct personalized assessments, as many health conditions

have clinical heterogeneity, driven by varying experiences and traits of people. In such cases,

generalized models capturing average target behavior may not provide actionable insights or

useful information to build Just In Time Adaptive Interventions (JITAIs) to address such

health conditions [376, 593]. Similarly, in the workplace context, when predicting workplace

outcomes, it might be useful to incorporate apriori information about the type and hours of

work for contextualization.

The efficacy of personalized predictions is also plausibly dependent on the universality

and applicability of a psychological construct on given population. For instance, given that

sleep is a universal activity across individuals irrespective of their mutable and immutable

characteristics, personalizing sleep quality predictions using physical activity turned out

to be significantly effective. However, in cases of less-universal or cohort-specific metrics,

such as academic success in grade school, it may make more sense to use demographic or

other apriori groupings, e.g. grade level. In addition, person-centered approaches may be

uniquely valuable in the cases of rare and less-prevalent attributes, such as understanding

phobia, anxiety or psychotic disorders, where globalized datasets may be imbalanced and

negatively-skewed due to rarity of the condition, significantly impacting the predictions.

204



This study has an implication regarding the reasonable use of sensors in accordance with

the construct of interest. As an example, contextualization improved predictions of sleep

quality but impaired predictions of cognitive ability. One likely reason that person-centered

models predicted sleep quality significantly better was that the multimodal sensing pool

included wearable-based sleep sensor and physical activity sensors. In contrast, none of the

physical sensors are theoretically associated with cognitive abilities, so, increasing noise

and impairing predictions using social media features which are inherently strong predictors

of cognitive ability. An interesting question for future research could establish if sensors that

capture speech and communication patterns and social interactions could improve predicting

cognitive ability better than social media based predictions alone.

Ease of Interpretation and Domain Adaptations Person-centered analytical approaches

can represent individuals on their characteristics rather than defining them simply as a col-

lection of variables [154, 309, 670]. These approaches can be more readily interpretable

relative to all-inclusive features, where certain features may obscure others. Rather, this

study’s approach allows us to cross-introspect features, e.g., how certain offline behav-

iors are associated with social media language within and across clusters. This kind of

explanation and interpretation may be immensely valuable in healthcare and precision

medicine, which is defined as “an emerging approach for disease treatment and prevention

that takes into account individual variability in genes, environment, and lifestyle for each

person” [441]. Such approaches would allow simultaneous inspection at in-conjunction and

isolated behaviors. For example, a particular combination of linguistic markers and disrupted

physical movements may be useful for early detection of certain mental health symptoms

and accordingly guide tailored intervention. Moreover, person-centered approaches can

improve human-centered algorithms to be more considerate of the individual in focus by

incorporating their circumstances and context.

This study supports Howard and Hoffman’s point to researchers of human-centered
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machine learning that personalized or generalized approaches are not necessarily com-

petitive, but are complementary in terms of methodological, statistical, and theoretical

advantages [309]. While one approach may be ’better’ outcome-wise, it is worth considering

theoretical and practical objectives in understanding the relationships between known and

unknown attributes, and in making interventions of addressing a condition. Researchers

can benefit from theory-driven computational frameworks that incorporate the predictive

capabilities of both precision and generalizability, as well as the explainability in feature

interpretation and actionable insights.

Ethical and Privacy Implications

This study has several ethical implications. Proper caution needs to be taken about perceiving

or misusing this study as a method to facilitate surveillance or profiling users on user

behaviors [461]. It is important to balance the costs and benefits of such systems with an

emphasis on privacy-preservation. As Pandit and Lewis describe, “the use of personal data

is a double-edged sword that on one side provides benefits through personalisation and

user profiling, while the other raises several ethical and moral implications that impede

technological progress” [461]. While physical sensor data may be better anonymized and

secured compared to demographic information, it is still critical to ensure that the data is

simultaneously useful and privacy-preserving.

This study clusters individuals on physical activity data as collected via passive sensors

— while these clusters can be characterized on different variables, they may not necessarily

translate to mappable individual characteristics, and there is no particular means to simply

label them as “desirable” or “undesirable”. Any misinterpretation and misuse can bear

consequences. For instance, a possible misuse in workplace contexts could be clustering

employees on behaviors such as work-times and routines, then characterizing them on

productivity, proactivity, and pro-socialness, followed by rewarding and penalizing employ-

ees on such characterizations. Any such empirical analyses require careful and in-depth
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supplemental ethical analyses before enacting any inference and decision-related outcomes.

Finally, with the ubiquity of digital data, the proposed approach of personalizing predic-

tions could be adopted in various contexts, including ones without awareness or consent of

individuals. This forms a part of larger discussions on ethical and responsible use of data

which require forthcoming discussions among ubiquitous computing researchers, ethicists,

and practitioners to understand and respect the individual perspectives on such use of data,

which can start from those who choose to participate (or not participate) in multimodal

sensing studies [514].

6.2 Understanding Life Event Disclosures on Social Media

Ups and downs are inevitable in our life. As social media platforms continually emerge as

important parts of many of our lives [478], they serve many needs and purposes surrounding

those very ups and downs of life. Not only do these platforms enable us to connect with

others and share day-to-day happenings in life [74, 263, 626], they also have explicit

affordances [87] in design that allow us to record and archive their important life events. For

instance, the Facebook timeline reminds us of birthdays and personal milestones.

Toward better user experience, most social media platforms today employ algorithms to

recommend, rank, or curate personalized content. However, despite providing affordances

to gather information on life events, social media content personalization largely relies on

topics, interests, and social connections, and rarely accounts for an individual’s life events.

For this reason, when a Facebook user Eric Meyer was shown his “Year in Review” on

the platform in 2014 that included his now-dead daughter’s picture, he felt the feature to

not only be jarring but also emotionally triggering – labeling the News Feed algorithm as

“inadvertently cruel” due to its insensitivity to people’s life events [415].

In attempts to serve as safe spaces for authentic expression, support seeking, and promot-

ing wellbeing [91, 165], social media platforms need to consider affordances and algorithms

that are sensitive to, respectful of, and compassionate towards major happenings in an
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individual’s life. Such an approach can improve the value one can gain from social media

participation, such as meeting varied emotional, informational, and therapeutic needs, and

empowering people to gain, maintain, and leverage their social capital. Furthermore, research

in human-computer interaction (HCI) and computer-mediated communication (CMC) re-

veals how naturalistic, self-initiated, and open-ended forms of social data recording, enabled

by social media, can augment our understanding of people’s reactions and behavior changes

surrounding major life events, such as gender transition [284], death of a loved one [83,

404], child birth [164], job loss [91], and pregnancy loss [19]. For example, after a personal

crisis, people may desire to reach out to their social media networks for support [19], and

following a job loss, an individual may seek empathy from their online social ties and seek

new opportunities or job search-related resources from their weak ties [91]. Together, this

calls for a critical need to understand social media disclosures of life events.

A life event disclosure on social media uniquely conveys how someone perceives and

shares their feelings about the event. However, from an individual’s perspective, deciding to

self-disclose something as sensitive as a life event on social media can be influenced and

compounded by various factors. Literature outlines social media disclosure is affected by

factors related to self-presentation, social desirability, audience, boundary regulation, and

stigma — people may want to be viewed in particular ways across different audiences, or

may not be comfortable about sharing some aspects of their lives with their social media

audience [249, 338, 403]. Importantly, an individual may not disclose all life events on social

media, and the disclosure choices may vary across individuals and situations. However, the

specific factors that explain disclosures (and non-disclosures) remain largely unknown. A

deeper examination of life event disclosures would help us understand the authenticity of

social media postings regarding how closely this data reflects real-world occurrences of

life events in one’s life. This would also help to design platform affordances that account

for and are sensitive to an individual’s life events, and content curation/recommendation

algorithms that more adequately represent the gap between observed and unobserved social
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media behaviors.

Towards designing platforms sensitive to life events, this formative study examines what

life events people disclose or withhold on social media, how these disclosures happen, and

what are the attributes of individuals who tend to disclose versus not. To accomplish the

research goal, in the absence of “true ground-truth” of life event occurrences, I compare

social media disclosures of life events with life events self-reported on a standardized survey.

Specifically, I use year-long Facebook data from 236 participants who also responded to a

retrospective survey, adapted from the PERI life events scale [180], which inquired about

life event occurrences in the past year. I ask the below research questions:

RQ 1: How do life event disclosures on social media deviate from a self-reported survey?

RQ 2: How do individual and event attributes explain the deviation in life event disclosure

on social media compared to the self-reported survey?

First, targeting the question of how online self-disclosures of life events deviate from

self-reports, I qualitatively code and define life event disclosures on Facebook data. This

study contributes a comprehensive codebook (available for theory and practice) that

enhances our understanding of social media disclosures of life events. I thematically

analyze the language of life event descriptions on social media as compared to their occur-

rences, with insightful findings such as: social media life event disclosures are typically

expressive and emotional in nature; multiple life events may be recorded in the two modali-

ties – social media and survey that might be related, unrelated, or causal; and that negative

events tend to stand out in the retrospective recall of individuals, manifested through their

survey responses.

Second, given an individual and a life event, I examine how individual and event

attributes explain the deviation in disclosure on social media from self-reported surveys.

I build logistic regression models of logging behaviors by controlling for individual and

event attributes. Here individual attributes correspond to demographics and intrinsic traits of
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cognitive ability, personality, and affect, and event-centric attributes correspond to valence,

significance, recency, anticipation, intimacy, scope, status and type of event. The analyses

reveal significant findings advancing the understanding of online life event disclosures:

positive and anticipated events are more likely to be disclosed online, whereas significant,

recent, and intimate events bear a propensity to be self-reported in survey.

The findings reveal how different life events elicit varied decision-making processes

on the part of social media users surrounding what, when, and how to disclose, while also

navigating the underlying norms of the platform and the audience of a potential disclosure.

Then I unpack the fundamental differences between social media platforms and surveys

pertaining to the context of use and available affordances, and discuss a need to understand

and straddle the socio-technical gap [5] between what individuals disclose online in a self-

initiated, intrinsically motivated manner, and what they self-report offline to a prompted

survey conducted by a more private but unfamiliar audience of researchers. Drawing on

these theoretical underpinnings and implications, this study argues that a “one size fits all”

approach to scaffold online life event disclosures may not work. I conclude by providing

design suggestions for social computing systems that are sensitive to people’s life events,

including strategies that accommodate non-disclosure practices and that provide agency to

those social media users who choose not to disclose specific life events.

6.2.1 Study and Data

This study uses data from the Tesserae project (section 4.1) [406].

This study examines life event disclosures on the Facebook data of the participants. Given

that Facebook is the most popular social media platform [262] and its longitudinal nature has

enabled social media studies of individual differences [19, 164], it suits the problem setting

of understanding life event disclosures on social media. Among the Tesseae participants,

out of the 572 participants who provided access to Facebook data, 242 participants did

not make any update during the year-long study period between January 2018 and April
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Table 6.7: Descriptive statistics of self-reported demographics and psychological constructs
of 236 participants with both social media and life events survey data.

Covariates Value Type Values / Distribution

Demographic Characteristics
Gender Categorical Male (n=121) | Female (n=115)
Born in U.S. Categorical Yes (n=218) | No (n=18)
Age Continuous Range (22:63), Mean = 36.57, Std. = 9.88
Education Level Ordinal 5 values [HS., College, Grad. Student, Master’s, Doctoral]

Cognitive Ability (Shipley scale)
Fluid (Abstraction) Continuous Range (5:24), Mean = 16.93, Std. = 2.94
Crystallized (Vocabulary) Continuous Range (22:40), Mean = 33.70, Std. = 3.32

Personality Trait (BFI scale)
Openness Continuous Range (2.17:5), Mean = 3.84, Std. = 0.61
Conscientiousness Continuous Range (1.92:5), Mean = 3.94, Std. = 0.63
Extraversion Continuous Range (1.67:4.92), Mean = 3.42, Std. = 0.68
Agreeableness Continuous Range (2.25:5), Mean = 3.95, Std. = 0.55
Neuroticism Continuous Range (1:4.58), Mean = 2.44, Std. = 0.78

Affect and Wellbeing
Pos. Affect Continuous Range (13:49), Mean = 34.24, Std. = 5.69
Neg. Affect Continuous Range (10:37), Mean = 16.83, Std. = 4.62
Anxiety Continuous Range (20:67), Mean = 37.83, Std. = 9.33
Sleep Quality Continuous Range (1:16), Mean = 6.80, Std. = 2.57

2019 — the same period when the participants’ self-reported life event occurrences were

also collected. This paper uses a data of 14, 202 posts of the remaining 330 participants

in subsubsection 6.2.2, which is followed by examining factors for life event disclosures on

a subset of 236 participants’ data who also responded to self-reported survey on life events,

explained below.

Self-Reported Survey Data

As already explained before, Tesserae project included a number of surveys during en-

rollment, including demographics and individual differences. Table 6.7 summarizes the

distribution of the self-reported data within the 236 participants, where we find a reasonably

well distribution in demographics and psychological traits among the participants.

End of Participation Period: Life Events Survey Data At the end of the participation

period of Tesserae, participants were optionally asked to fill in a life events survey. This life

events survey was designed drawing on the Psychiatric Epidemiology Research Interview

(PERI) life events scale [181]. Life events were broadly categorized as School, Personal,
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Table 6.8: Life Event categories, example hints provided in survey, and example self-reported
description in the post-participation self-reported survey — survey scale drawn on the PERI
life events scale [181].

Event Type Category Hint Example Self-Reported Description

School Back to school, Changed school, Finished school, Issue
at school, etc.

Accepted to business school

Personal Getting married or divorced, Having a child, Experienc-
ing a death of someone close, Moved residences, Dam-
age of property, etc.

Was working on an adoption

Work Changed jobs, Received a promotion, Was fired, Had
performance review, Received bonus, End of quarter or
year, Reorganization

Given more responsibilities in my job,
which made me realize I don’t want to
work in this job anymore

Health Physical illness or injury, Health treatment, Miscar-
riage/Stillbirth, Pregnancy related changes, Started
menopause, Health changes

Mother diagnosed with kidney failure and
congestive heart failure

Financial Went into debt, Took out mortgage, Made a large pur-
chase, e.g. car or home, Experienced financial gain or
loss

Paid off 2 vehicles and refinanced one to
pay off high interest credit cards

Local/ Re-
gional

Weather-related changes (blizzard, flood, storm, etc.),
Societal changes (political or economic event, sports
event, mass-shooting, etc.)

Was at a baseball game where my team
advanced to National League Champi-
onship

Other Any other events that do not fall under the above cate-
gories

-

Work/Organization, Health, Financial, Local/Regional, and Other. For each category,

the survey also included example seed events to help the participant understand respective

categories. Participants were briefed that they could refer to their calendars and any relevant

personal diaries or journals while completing the survey, to verify the events and dates. The

survey was designed in such a way that participants could enter more than one event, and

include corresponding attributes about the events. These attributes include a brief description

of the event, and two 7-item Likert scales of self-identified significance (Lowest to Highest

significance) and valence (Extremely Negative to Extremely Positive) of the life event. In

addition, participants entered the start and end date range, status of the event (ongoing or

ended), and a confidence value (7-item Likert scale from Lowest to Highest Confidence)

regarding the occurrence of the event. Table 6.8 shows the different categories of life

events in the survey along with category hint provided in survey and example self-reported

descriptions from the responses.

Out of the initial total of 754 participants, 423 participants responded to these surveys

with 1, 547 entries of life events during the study participation period (mean = 3.86 events

per individual). Out of these 423 responded participants, 236 provided us the social media

212



data (above subsection). I examine the data of these 236 participants to understand the

deviation of online self-disclosure of life events from self-reports.

6.2.2 Methods

Defining and Annotating Life Event Disclosures on Social Media

Social media facilitates self-disclosures of experiences from day-to-day lives [20, 205]. From

the standpoint of life event disclosures, social media posts are unstructured forms of textual

expressions, and this data lacks “ground-truth” labels regarding what constitutes a life event

disclosure and what does not. So I first aim to systematically identify online self-disclosures

of life events from social media data with respect to a theoretical grounding of life event

occurrences. I adopt a qualitative coding approach to iteratively define and annotate life

event expressions on social media. This study primarily builds on and adapts the list of

categories from the PERI life event scale [181] in the context of social media data. This

theory-driven coding enables us to formally define a social media post to contain a life event

disclosure if the post describes an event which is directly or indirectly associated with the

individual or their close ones, such that it potentially leaves a psychological, physiological,

or behavioral impact, or be significant enough to be remembered after a period.

While the PERI life events scale [180] identified a list of various life event categories,

there is no established means to adopt this on social media data. This study applies these

categories in a sort of directed coding approach [310], i.e., when developing the codebook,

this study allowed concepts and meanings to emerge from posts in somewhat of an open

coding [602]. This codebook is particularly driven towards identifying life event disclosures

from social media language. The Appendix provides the detailed codebook ( Table C.2) to

identify life event disclosures on social media.

This study recruited five annotators who are undergraduate students. Although the

Facebook data primarily consists of English posts and belongs to a participant pool recruited

in the U.S., all participants were demographically and culturally heterogeneous. Therefore,
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it is important to note that the annotators (three women and two men) belonged to diverse

cultural backgrounds; in race/ethnicity, two identified as Caucasian, two as East Asian,

and one as South Asian. During discussions, the research team found specific occurrences

when annotators were able to identify culturally significant events due to their cultural

backgrounds, which could have been missed by other annotators. These five annotators first

coded a random sample of 140 Facebook posts with the PERI life events scale [180] and the

instruction that they could add new categories if a post was a life event disclosure and it did

not fit any of the existing PERI categories.

The annotators and the research team then discussed the coding one by one in detail.

Together, decisions were made on all posts with coding discrepancies, and the codebook

was revised based on agreeable themes. These included resolving boundary and similar

sounding cases such as identifying a trip versus a vacation. Next, the annotators separately

coded an additional 50 randomly selected posts. For the total 200 posts, the research team

found a high agreement of 88% between the annotators and an average Fleiss κ of 0.71.

Two annotators then independently coded the remaining 14, 002 posts. Because of the

subjectivity in social media data, I adopted a liberal identification strategy that a post is

labeled as a self-disclosure of life event if it is labeled so by either of the two annotators. The

research team discussed several explicit and boundary cases to decide general criteria for

identifying life event disclosures, which I elaborate on in Table 6.9. Note that the presence

of a post within the context of other posts (before and after it) drove the decision-making

towards labeling a post.

Comparing Life Events Disclosed on Social Media Versus Reported on Survey

So far, I described our approach to obtain life events disclosed on social media and self-

reported in surveys. Consequently, for the common set of 236 participants for whom I

have both modalities of data, I obtain 912 life events self-reported on the survey and 1, 669

self-disclosed on social media. To answer the core research question on what, how, when,
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Table 6.9: Brief strategies and considerations to identify life events on social media.
What constitutes a life event disclosure?

Present events with potentially significant impact in the future.
Posts were coded as life events disclosing a present event which is significant enough that to be recalled in a few years, or if the event
in disclosure could potentially leave a significant emotional impact in the future. For example, “Horrible day for travel. Two canceled
flights and 2 delays. Sharing the sights from this week while I wait to get home.”
Past events with significant emotional impact in the present.
Self-disclosures about recalling events from the past. This conveys the significance of the event in the individual’s life and leaves
emotional impact. Therefore, for events that occurred a while ago, if they have a big enough emotional impact even in the present, these
posts would be identified as a life event, e.g., recollecting the death of someone close often results in grief in the present [466], such as,

“When you are looking for one child’s birth certificate and find the other child’s death certificate.. 33 days and you would be 16..”
Using the post wording.
Wherever applicable, in cases of close tie in assigning a post with a life event category, we prioritized the wording in the post. We
considered that the individual’s self-description of an event is less biased and closer to self-perceived life event type. For example, when
deciding between trip and vacation, if the post explicitly used either of the two words, we assigned the same life event category. For
example, we assigned trip for “For my recent business trip I flew Delta. I’m giving them 4 stars. They have on-demand in-flight movies
and I got to watch Black Panther.”
Underlying reason of an event.
As above, when multiple categories could fit a post, we prioritized the one that seemed to be the underlying cause. Sometimes, other
posts around the same date provided more context to make these decisions. For example, in the following post, although both vacation
and positive relationship could be appropriate, positive relationship (anniversary) was the more underlying cause (also consistent with
the individual’s other posts around the same date), “What a beautiful weekend celebrating our 10th Anniversary! So thankful for getting
away to enjoy time together as husband and wife <3.”
Disclosing multiple life events.
A post may disclose multiple life events, including continuous or ongoing events, e.g., a vacation may include a birthday party, or a
wedding planning post may also talk about different investments, e.g., “Going to start selling a small selection of simple car [..] Trying
to make some money on the side for wedding and honeymoon, and my medications. Also gotta pay this damn hospital bill now.”
Continuous Life Events
Certain posts may mention continuous life events. The longitudinal data enables identifying events lasting for a time period, e.g., start,
during, and end of a vacation. Continuous events can be 1) a series of posts which together build a continuous event, 2) other posts
providing context about a seemingly vague post at hand, and 3) a single post describing a continuous event. These may not be exclusive
and can co-occur, e.g., a post describing a “view” or a “beautiful city” may seem vague, but, posts around the date provided context
these are during-vacation activities. Again, a continuous life event can include related or unrelated life events within that period.
Additional Life Events Categories
While annotating social media life event disclosures, we included open coding, allowing new categories, which might not directly be
present in the PERI scale. For example, we added a new category of Voted for a post, “I voted”.

What does not constitute a life event disclosure?
Vague Post.
Exclude if the posts is too vague to make a deduction of a life event, e.g., “Waited for this FOR FOREVER!!!!!!!!!.”
Joke or Entertainment Media related.
Found posts that mention a life event, or keywords related to life events, which were explicit expressions of these to be a joke, or a
description about an event in a movie, TV show, video game etc, for example, “The end... he died lol!”
Past events, but no significant emotional impact in the present.
Posts describing events or self-experiences from the past, without significantly affecting the present, were excluded, e.g., “The meals,
and especially the Blue Mountain coffee, were the best in Jamaica.”
General shares or global events.
Posts in third-person of generic information (no personal reference) based sharing were excluded, e.g., “In four years as a student at
University, Name had seven internships.[..] The experiences helped her decide what she wants in a career [..]”

and by whom life events are disclosed on social media compared to self-reported surveys,

first, I examine the distribution of life events in the two modalities of datasets. Then, I

conduct a thematic analysis of the overlapping life event logs from the two datasets. Finally,

I examine the factors that explain the overlap and deviation in reportage on either or both

the modalities, for which, I describe the statistical tests in the following subsection.
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Examining Factors Associated with Life Events Disclosures and Survey Self-Reports

To examine the factors explaining deviation in recording life events on the two modalities, I

identify a set of theory-driven covariates that may contribute to an individual’s life event

disclosure (or no disclosure) on either or both the modalities. I use these covariates in our

statistical tests and models to explain such life event disclosure.

Covariates Given an individual and a life event, the covariates belong to two major kinds

— individual centric attributes and event-centric attributes, which I describe below.

Individual-centric Attributes Given that an individual’s disclosure is known to be

driven by their demographic and intrinsic traits, I use individuals’ demographic and psycho-

logical attributes (as in Table 6.7) in our models.

Demographics. Prior studies controlled on several demographic attributes in studying self-

presentation and self-disclosure of individuals [536]. I include demographic variables of

gender, age, born in the U.S., educational level, and income in our models.

Cognitive Ability. Cognitive ability is known to associate with an individual’s disclosure

and expressiveness [493], which I include as independent variables in our model. I used

the the Shipley scales of 1) Abstraction measuring fluid cognitive ability and 2) Vocabulary

measuring crystallized cognitive ability [578].

Personality. Prior work revealed the role of personality in people’s disclosure, including

in online settings [308, 561]. I include personality trait as a covariate in our models where

ground-truth assessments of personality traits come from the Big-Five inventory along the

traits of openness, conscientiousness, extraversion, agreeableness, and neuroticism [589].

Affect and Wellbeing. Social media use is known to be associated with people’s trait based

measures of affect and wellbeing [655]. I include positive and negative affect traits as

assessed by the PANAS-X scale [658], anxiety trait as assessed by the STAI-Tait scale [591],

and sleep quality as assessed by the PSQI scale [182]. I note that PSQI scale assesses
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sleep quality in such a way that lower values indicate healthier sleep. Therefore, for easier

interpretation, I reverse-scale the values and use “Healthy Sleep Quality” as a covariate

which directly correlates with healthier sleep.

Event-centric Attributes People’s life event disclosures (or non-disclosures) may be

driven by event-centric attributes. I describe the motivation and the operationalization of

event-centric attributes considered in our models below.

Event Recency. Self-reported surveys are known to be biased to more recent events [29,

246]. However, no such evidence exists about social media postings, which is more of

a self-initiated and in-the-present recording. To understand such an effect in online life

event disclosure, I include recency of events as an independent variable. I first choose

a reference date as the date of conducting the end of participation survey. Then, for the

survey data, I calculate the number of days between the reference date and the self-reported

occurrence of event (also collected in the survey). For social media data, I calculate the

number of days between the reference date and the date of posting. For easier interpretation

and standardization, I reverse-scale the number of dates to obtain recency on a min-max

scale of 0 to 1 — such that 1 represents most recent event whereas 0 represents least recent

events.

Event Significance. Individuals are known to be more likely to recall and report events

which bear greater degree of significance in their lives in whatsoever ways [436]. This aligns

with survival salience [436], and emotional or informational relevance can drive the salience

in memory [344, 470]. Participants self-reported how significant they considered each life

event they logged — which I use as an independent variable for event records from surveys.

For events recorded on social media, I adopt the significance rating per event as per the

PERI life events scale [181]. I separately standardize the significance scores on a min-max

scale of 0-1 to make the significance scores comparable across the modalities, and then use

this scaled score as an independent variable in the models.
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Valence. The independent variables include valence or sentiment of the event, in terms of

being positive or negative. Like above, valence directly associates with emotional relevance

of an event in the memory [344]. The survey data included people’s self-reported valence on

a Likert scale of extremely positive to extremely negative, which I group into three bins of

positive, neutral, and negative to minimize subjectivity in the analyses. To score valence of

social media life events, I use the VADER tool [315] to identify the major sentiment of a

post among positive, negative, and neutral, which I use as the valence for life event entries

from social media data.

Anticipation of an Event. Life events include a characteristic on the basis of anticipation:

Compas, Davis, and Forsythe defined anticipated events as the events which an individual

can either hope or worry about in the next six months [132]. I adopt a similar definition

to label each life event in the dataset with binary labels of anticipated or unanticipated.

Example anticipated events are buying a house, childbirth/pregnancy related events, whereas

example unanticipated events are accidents or getting fired from work.

Intimacy in Disclosure. Prior work studied that intimacy is a core attribute that might

moderate people’s disclosure behavior [15, 206, 389]. Intimacy relates to the degree to

which one can comfortably open up about a particular event at personal, close, trusted

others, and public circles of relationships [206, 249]. While social media disclosures are

broadcasted to some form of public or known private audience, a self-reported survey is

likely self-perceived to be much more private. I draw upon the annotation scheme from

Ernala, Labetoulle, Bane, Birnbaum, Rizvi, Kane, and De Choudhury to code life event

descriptions — I annotate both survey self-reports and online disclosures of life events on a

degree of intimacy Likert scale of Low, Medium, and High2.

Scope of an Event. The social ecological model posits that an individual’s wellbeing is

impacted by different layers of scope ranging across individual, relationships with close

ones, societal, and local factors [102]. Similarly, the scope of a life event can either be

2The Appendix provides the detailed codebook, and the codebooks to annotate intimacy, scope, and status.
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directly on the individual themselves, or their close ones, or something more generic [59]. I

label each life event in the datasets with their ecological scope of directness on a three-point

Likert scale1 such that 1) Low scope events include generic events such as bad weather or

neighborhood related events, 2) Medium scope events are associated with someone close and

leave an indirect effect on the individual (e.g., spouse’s pregnancy, child going to school),

and 3) High scope events are unique to and direct on the individual, e.g., being fired from

job themselves.

Temporal Status. I also include temporal status of events in terms of a binary value of

ongoing or ended. This factor takes into account during-reporting continuity of events. Our

survey included self-reported entries of the status of event, and for social media, I manually

identified the temporal status by going through the life event disclosure posts1.

Event Type. As introduced earlier, the datasets (both social media and surveys) group the

life events into six broad categories of School, Health, Personal, Financial, Work, and Local.

While the self-reported survey data was already annotated with these categories by the

participants, the social media data life event expressions were annotated by the annotation

approach and codebook1. I use the categorical variable of life event type as covariates in

the analyses. Besides, although the data contains labels of finer categories of life events

(e.g., vacation, health loss, bad weather, child birth, etc.), the number of records per event is

plausibly not significant for statistical power, and may lead to inconclusive or misleading

results [129] In addition, theoretically an individual only experiences a limited number of

life events per year [251, 405], so it would be impractical to include all possible life events

without a significantly larger sample size than what I have. I validate this hypothesis by

conducting a χ2-square test, which reveals χ2 = NaN and p = NA, suggesting not enough

observations per finer categories of life event.

Baseline Attributes Social media and self-reported surveys are fundamentally two

different data modalities, and it is important to control the models on an individual’s baseline
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behavior on these modalities. Essentially, for each individual, I compute four baseline

attributes — social media baseline attributes include, 1) total number of posts and 2)

average length of post per individual, and survey baseline attributes include, 3) total number

of responses and 4) average significance self-reported in each response. These baseline

attributes go in as covariates in the models.

Tests and Models First, I obtain a union of all the life events recorded on social media

and on survey as the total dataset (DT). Then, I conduct a One-way Multivariate Analysis

of Variance (MANOVA) tests on the combination of dependent variables of social media self-

disclosure and survey self-report to the set of theory-driven covariates explained above. A

statistical significance in MANOVA would reveal the importance of each covariate in explaining

life event reportage on either or both of social media and surveys.

Next, to understand the direction of the factors in their associate with life event disclosure,

I conduct two kinds of analyses drawn on nested logistic regression models — one on DT

and the other on a subset, DS consisting of events recorded in one of the two modalities.

This would allow us to examine the intricacies of each factor and their signed (positive or

negative) importance in explaining reportage. I describe the two analyses below:

• Convergence: The first analysis studies whether a life event is likely to be recorded in

both social media and survey modalities. On DT, I build a binary logistic regression

model that uses dependent variable as a binarized value based on the occurrence

on both modalities, i.e., if the event is logged on both modalities, it is labeled as 1,

otherwise 0. This model is referred to as Model1.

• Divergence: The second analysis is conducted on DS, among life event records which

are not recorded on both the modalities — what is the likelihood of it to be self-

disclosed on social media versus self-reported on survey. This logistic regression

model uses as dependent variable the binarized value based on the occurrence on

either of the modalities. That is, given an individual’s life event log which does not
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Figure 6.5: Distribution of data by life events (a) in self-reported survey data, (b) in social
media data, (c) per category (percentage values are on all the life events reported within
each dataset).

occur at both modalities, it is labeled as 1 when self-disclosed online, and labeled as 0

when self-reported on survey. I refer this model as Model2.

6.2.3 Results

Distributions of Life Events

Table 6.10: Top life event recorded in survey self-reports and social media self-disclosures.

Survey Self-reports
Life Event Type Count
Vacation Personal 182
Performance Review Work 117
Bad Weather Local 88
Health Loss Health 88
Promoted Work 53
Positive Job Switch Work 45
Heavy Work Work 44
Got Bonus Work 44
Neutral Job Switch Work 42
Trip Personal 40
Installment Purchase Financial 36
Child Birth Personal 33
Death in Family Personal 28
Positive Move Personal 28
Financial Gain/Loss Financial 27

Social Media Self-disclosures
Life Event Type Count
Vacation Personal 485
Trip Personal 227
Increased Social Activity Personal 142
Family Meetups Personal 106
Positive Relationship Personal 85
Health Gain Health 69
New Hobby Personal 67
Positive Move Personal 56
Death in Family Personal 45
Back to School School 42
Work Success Work 40
Remodeled Home Personal 34
Good Worklife Work 34
Injury Health 34
Child Birth Health 29

I present the distribution of life events reportage on both modalities by number of

individuals in Figure 6.5a and Figure 6.5b. First, there is a heavy skew at x=0 for social

media disclosures, which does not exist for survey self-reports — a key difference in the

characteristic of the two data modalities. Out of the 14, 359 Facebook posts, only 14%
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(2, 031) express life events as per the annotation. In contrast, the survey is a dedicated effort

directly asking the participants to log life events, so, 100% of its responses correspond to

some form of self-perceived notion of life event per individual.

Next, Figure 6.5c shows the category-wise distribution of life events in the two modalities.

Both the datasets show a prevalence of Personal life events — 39.5% among all survey

responses, and a high 70.4% among all online disclosures. Interestingly, Work, which is

significantly logged in survey self-reports (32.5%), appears low on social media (5.7%).

Health events are recorded comparably on both surveys (9.5%) and on social media (8.3%).

Table 6.10 presents the top life events recorded on the two modalities. Vacation scores

the highest on both. In fact, vacations and trips occur more commonly across individuals

as opposed to the rarity and uniqueness of other events. Our data suggests that Facebook’s

design and perceived use-case may facilitate individuals to post prevalently about vacation

and trip events. Again, these events are often recorded on calendars, which may guide

individuals to report these events in the post-participation life events survey.

Table 6.10 also explains the significant occurrence of other categories in the self-reported

survey data including, Work-related performance review, promotions, heavy work, and job

switches, none of which are disclosed significantly on social media. Rather, the only Work

categories frequently disclosed online are good worklife and work success — both of which

bear a positivity in valence. This may indicate that people are not comfortable about sharing

work-related negativity on social media due to concerns of employer surveillance [236].

Another interesting contrast includes that health loss appears as a top event self-reported in

surveys, whereas health gain occurs in those disclosed online. These observations suggest

an inclination towards disclosing positive events on social media, which may associate with

perceived self-presentation and social desirability of individuals on a public platform (social

media) [305].

There is difference in labeling life events in the two modalities (self-perceived vs.

inferred). This distinction may indirectly explain the observation that the annotation scheme
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identified increased social activities (e.g., celebrations, gatherings) as “life events”, which

might not be self-perceived the same way to be recalled during a survey that happened after

a period of time. In contrast, death in family and child birth commonly occur in the top

life events on both modalities. These events are known to bear both short-term as well as

long-term effect on one individual’s life [180].

Language of Life Event Disclosures

I investigate the relationships between social media posts that were temporally similar to life

events self-reported on surveys. In particular, for each individual, I inspect events that were

overlapping on the two modalities or occurred less than 7 days from each other. I aim to

qualitatively determine what relationship, if any, there is between the reportage of life events

on these modalities. After identifying pairs of potentially overlapping events from each

modality, I compare and code the similarities and differences in linguistic descriptions of

the events from the two modalities. Then, based on the codes, I conduct a thematic analysis

to gradually coalesce the codes into themes of associating online disclosures and survey

reported life event descriptions. Some notable themes are listed below.

Emotional and Expressive Content Social media posts are more likely to bear an emo-

tional tone about events. These include several occurrences for events such as adoption

of pet and child birth, “Name was born today. She was 8lbs 5oz and 21 inches long. We

love her so much and are very thankful that she is happy and healthy! Thanks for all of the

prayers!!”. Similarly, social media posts also contain greater and richer detail about the

event, for example, someone whose self-report survey entry only recorded a vacation, had

posted on their social media about their vacation and positive relationship event, “Best date

night with my husband! Love you to the moon and back dear husband #wefishtogether.”

Co-occurring and Related Events. Sometimes the social media post can reflect a co-

occurring and related event in someone’s life. For example, an individual who self-reported
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on the survey to be on a vacation on certain dates, posted about a family meetup during those

dates, “Had the joy and privilege of seeing my niece dance in the ballet Sleeping Beauty

today...also got to spend time with some people dear to my heart.”, here vacation and family

meetup co-occur. Another individual, who changed jobs, posted about their move to a new

city, “Just rolled into California. Quite some driving but an easy roll into SF tomorrow.”

Followup or Cause-Effect Related Events There are instances where one life event may

have triggered or caused a separate life event about which the individual posted on social

media. For example, an individual who reported to be assaulted on a particular day, followed

up with a Facebook post on “I’m moving.” Again, an individual who self-reported about a

bereavement leave at workplace on survey, had self-disclosed about the death of a family

member a day prior to the reported date, “This guy will be missed. Wish we had more time

together [..].”

Co-occurring but Likely Unrelated Events Interestingly, there are instances of events

that co-occur but are likely unrelated to each other. For example, an individual who self-

reported on the survey having trouble with their boss at workplace, self-disclosed about their

pet on social media, “Help me find my foster pup a forever home! He is the sweetest and

needs a great home asap [..]” Again, another individual who self-reported on the survey

about the death of a pet, had posted about a family reunion during the same time on social

media, “A family reunion time.”

Negative Stands Out in Recall. I find instances where a negative event within a span of

events outweighs the rest, and it is the only event reported in the survey (which happens

later). In contrast, the social media data archives events from the past but were presumably

recorded in-the-present. For example, in one instance, an individual posted about their

ongoing vacation on social media, however, in the survey they only logged about a breakup

on those dates. On another instance, an individual’s social media data revealed them enjoying
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Table 6.11: Multi-variate Analysis of Variance (MANOVA) results, * p<0.05, ** p<0.01,
*** p<0.001.

Demographic/Trait Pillai F p Event Attribute Pillai F p

Age 0.036 47.01 *** Valence 0.063 85.43 ***
Gender 0.072 100.34 *** Significance 0.317 592.16 ***
Born in US 0.004 4.87 ** Recency 0.044 59.81 ***
Education 0.051 16.73 *** Anticipation 0.086 120.23 ***
Shipley: Abstraction 0.057 76.61 *** Intimacy 0.002 3.11 *
Shipley: Vocabulary 0.033 42.97 *** Scope 0.005 1.67 *
Personality: Openness 0.002 2.56 * Status 0.516 988.62 ***
Personality: Conscientiousness 0.022 28.21 *** Type 0.183 51.31 ***
Personality: Extraversion 0.003 4.21 *
Personality: Agreeableness 0.077 106.63 *** Baseline Attribute Pillai F p

Personality: Neuroticism 0.030 39.64 *** SM: Num. Posts 0.088 121.00 ***
Positive Affect 0.003 3.73 * SM: Avg. Post Length 0.003 4.04 *
Negative Affect 0.005 7.03 *** SR: Num. Records 0.108 152.10 ***
STAI: Anxiety 0.001 1.56 SR: Avg. Significance 0.019 25.47 ***
PSQI: Healthy Sleep Quality 0.011 14.45 **

a vacation with friends, however they only self-reported a car-crash that might have happened

then.

Factors Explaining Life Event Reportage

Importance of Covariates in Reportage First, I examine the importance of individual-

centric and event-centric covariates to understand life event disclosures. I conduct MANOVA

tests with respect to the Pillai-Bartlett trace, which is considered to be robust and not strongly

linked to normality assumptions the data distribution [449]. Table 6.11 summarizes the

MANOVA statistics, where the F-statistic quantifies the association of the covariate with the

dependent variables, and larger values indicate greater statistical importance. I compare the

F -statistic and significance across the covariates. Among the individual attributes, agree-

ableness (F=106.63) shows the greatest association, closely followed by gender (F=100.34).

Among event attributes, status (F=988.62) and significance (F=592.16) show the greatest

association, followed by anticipation (F=120.23) and valence (F= 85.43). The statistical

significance shown by all variables (except anxiety) empirically validates the choice of the

considered theory-driven variables.
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Table 6.12: Model1 (Convergence): Coefficients of linear regression of relevant covariates
as independent variables and reporting on both modalities as dependent variable, * p<0.05,
** p<0.01, *** p<0.001. Bar length is proportional to the magnitude of coefficient; for
significant rows, orange bars (positive coefficients) indicate a propensity to record on
both social media and survey, whereas teal bars (negative coefficients) bars indicate a
propensity to record on one of the modalities.

Demographic/Trait Std. Coeff. p Event Attribute Std. Coeff. p

Age −0.03 ** Valence: Positive 0.24
Gender: Male −0.41 *** Significance −0.33 ***
Born in US: Yes 0.41 Recency −0.24
Education: H. School 1.57 *** Ancptn.: Anticipated 0.16 *
Education: College 1.33 ** Intimacy 0.08
Education: Grad School 1.78 ** Scope −0.51 **
Education: Doctoral 1.31 * Status: Ongoing 1.08 ***
Shipley: Abstraction −0.03 Type: Health 0.82 **
Shipley: Vocabulary 0.05 ** Type: School 0.54 *
Personality: Openness −0.24 Type: Work −0.61 *
Personality: Conscientiousness −0.25 * Type: Local −0.60 **
Personality: Extraversion 0.04 Type: Financial −0.49 **
Personality: Agreeableness 0.49 ***
Personality: Neuroticism 0.06 Baseline Attribute Std. Coeff. p

Positive Affect −0.04 * SM: Num. Posts 0.48 ***
Negative Affect 0.06 *** SM: Avg. Post Length 0.50
Stai: Anxiety −0.03 * SR: Num. Records 0.33 **
PSQI: Healthy Sleep Quality 0.02 SR: Avg. Significance 0.20 **
AIC = 2047.40, Deg. Freedom= 33, Log-lk. = −988.71, χ2= 408.98, McFadden’s Pseudo R2 = 0.18, p<0.001

Convergence: Reportage of Events on Both Social Media and Survey Model1 exam-

ines the factors associated with life events reportage on both of against on one of the

modalities (ref: Table 6.12). Model1 shows a McFadden’s pseudo R2=0.18, χ2(34)=408.98

and p < 0.001, suggesting that the model is significantly better than an empty model. For

a covariate x showing a standardized coefficient estimate of e with statistical significance,

could be interpreted as: a change in one unit of standard deviation likely results in e standard

deviation change in the log odds of the dependent variable. In the case of Model1, a positive

coefficient indicates a propensity to reporting a life event on both modalities, and a negative

coefficient indicates a propensity to report on one of the modalities.

Among demographics, the findings suggest that the likelihood to report on both modali-

ties lowers as age increases. Similarly, males are less likely to report on both. This aligns

with prior work [44] that males tend to self-disclose lesser than females on certain per-

sonal life events. Among traits, crystallized cognitive ability shows a significant positive

coefficient. This is plausibly related to the notion that greater cognitive ability is known to
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drive the ability to distinguish positivity and negativity of situations to accordingly structure

emotional expressiveness [510]. In personality traits, conscientiousness and agreeableness

are significant, each showing opposite association — conscientiousness negatively asso-

ciates whereas agreeableness positively associates with the likelihood to report on both

modalities. Conscientiousness characterizes one’s thoroughness [589] — a significance may

be associated with individuals being methodical in delineating what they want to disclose

on social media. On the other hand, agreeableness characterizes warmth and friendliness —

an individual scoring high on agreeableness likely “gets along well” with others [589, 617].

This plausibly relates to people knowing their online audience better, and experiencing low

inhibition to report on both modalities. Affect and wellbeing traits show weak relationships,

and interestingly positive and negative affect exhibit opposite directions — higher positive

affect explains lower reportage, whereas higher negative affect explains greater reportage on

both modalities.

Among event attributes, significance bears a strong negative coefficient (e=−0.33)

indicating that significant events are less likely to be reported on both modalities. Anticipated

events are likely to be reported on both (e=0.16); these events bear some form of planning

or apriori awareness (e.g., child birth), and people may not only disclose them online,

but also recall and report them in retrospective survey. In contrast, unanticipated events

plausibly relate to emergency circumstances, and people may deprioritize an immediate

online disclosure. These could also be short-term events (e.g., a positive relationship act)

which may be disclosed on social media in-the-present, but may not remain in one’s long-

term memory to be self-reported in a survey which happened after a while. Among event

types, Health and School events have propensity to be recorded on both social media and

surveys, whereas, Work and Financial events are unlikely to be recorded on both modalities.

Finally, note the the statistical significance of controlling for baseline behavior of

individuals. Recording on both modalities shows a positive association with individuals who

typically have more social media posts, more survey records, and whose baseline average
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Table 6.13: Model2 (Divergence): Coefficients of linear regression of relevant covariates as
independent variables and reporting on either modality (1 for online/social media and 0 for
survey) as dependent variable, * p<0.05, ** p<0.01, *** p<0.001. Bar length is proportional
to the magnitude of coefficient; for significant rows, blue bars (positive coefficient) indicate
a propensity to record only on social media, whereas red bars (negative coefficient)
indicate a propensity to record only on survey.

Demographic/Trait Std. Coeff. p Event Attribute Std. Coeff. p

Age 0.04 *** Valence: Positive 0.45 ***
Gender: Male −0.38 * Significance −1.40 ***
Born in US: Yes −0.75 Recency −3.56 ***
Education: H. School 0.43 Anticipated 0.45 *
Education: College 0.43 Intimacy −0.75 **
Education: Grad School 0.47 * Scope −0.93 ***
Education: Doctoral 0.48 Status: Ongoing 3.62 ***
Shipley: Abstraction −0.12 *** Type: Health −0.98
Shipley: Vocabulary −0.05 * Type: School 0.18
Personality: Openness 0.18 Type: Work −1.18 ***
Personality: Conscientiousness −0.04 Type: Local −1.11 *
Personality: Extraversion 0.13 * Type: Financial −2.90 ***
Personality: Agreeableness 0.73 ***
Personality: Neuroticism −0.11 Baseline Attribute Std. Coeff. p

Positive Affect 0.03 SM: Num. Posts 0.90 ***
Negative Affect −0.05 * SM: Avg. Posts Length −1.59
Stai: Anxiety 0.04 SR: Num. Records 0.49 ***
PSQI: Healthy Sleep Quality −0.04 SR: Avg. Significance −1.57 ***
AIC = 628.26, Deg. Freedom= 34, Log-lk. = −279.13, χ2= 1785.83, McFadden’s Pseudo R2 = 0.77, p<0.001

significance of self-reported life events on survey is higher. However, average length of

social media posts shows no statistical significance with respect to recording behavior.

Divergence: Reportage of Events on Social Media Versus on Survey Model2 examines

the factors that associate with reporting life events on either of the two modalities (ref:

Table 6.13). Model2 shows a McFadden’s pseudo R2=0.77, χ2(34)=1785.83 with p<0.001,

i.e., the model is significantly better than an empty model. Here, positive coefficients

suggests a propensity to record online, and negative suggests a propensity to report on survey

(and not social media).

Among individual-centric attributes, males (e=−0.38) show a lower likelihood to self-

disclose online. This observation somewhat supports prior work that found men to show

lower online self-disclosure than women [575]. There is a strong association with agreeable-

ness (e=0.73) — indicating that individuals with greater agreeableness have a likelihood to

self-disclose life events on social media. Similarly, extraversion shows a positive coefficient
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(e=0.13). Extraversion characterizes one’s outgoing, talkative, and energetic behavior [617],

and this trait is known to associate with greater expressiveness and disclosure [453, 507].

There is a weak negative significance for negative affect (e=−0.05), indicating that individ-

uals scoring high on negative affect are less likely to disclose on social media, which could

be associated with privacy and audience perceptions as noted in prior work [151, 403].

Among event-centric attributes, valence (e=0.45) and anticipation (e=0.45) bear positive

coefficients. This suggests that individuals tend to mostly disclose events on social media that

are positive and/or that are anticipated. On the other hand, both significance (e=−1.40) and

recency (e=−2.90) bear strong negative coefficients. This supports prior research regarding

the bias of self-reported surveys due to retrospective recall and significance of events [620].

Also, intimacy (e=-0.75) and scope (e=-1.03) bear negative coefficients, likely related to

the public-facing nature of social media and people’s self-presentation. Unsurprisingly,

social media disclosures are also more skewed towards ongoing events because they enable

in-the-present sharing, unlike surveys that elicit retrospective recollection.

Among life event types, Financial, Work, and Local events bear low likelihood to be

disclosed on social media. People may not be comfortable about sharing their financial gain

or loss events publicly on social media, or they may not share work-related events, especially

if they have concerns around context collapse [403]. In contrast, School events may not be

deemed that private, and people may be comfortable sharing about school-related success

and milestones.

Finally, among baseline attributes, number of social media posts positively associates

with life event disclosures on social media. Again, number of survey records also positively

associates with social media disclosure. However, individuals who reported higher signif-

icance of events on average tend to post lower on social media — this could relate with

people’s baseline perceptions of event significance and social media disclosures.
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6.2.4 Discussion

Theoretical Underpinnings and Implications

We sought to examine how/when people tend to disclose life events on social media, and the

attributes of individuals who choose to disclose versus not. This section first discusses the

theoretical underpinnings of this study, drawing on a host of theories and conceptualizations

in social computing and HCI. To situate the validity of the disparities between disclosure

and non-disclosure, we compared and contrasted social media disclosures with survey

self-reports of life events — the latter being the gold standard in capturing life events.

Accordingly, we also discuss how some of these differences are rooted in the differences in

the two modalities in their context of use and available affordances.

The Role of Audience and Norms Social desirability is a known bias in surveys and

in face-to-face offline settings [265]. This study reinforces prior evidence that this factor

could potentially modulate social media disclosures as well [430]. We found instances when

individuals were comfortable to disclose positive or anticipated events on social media that

were not remembered during the survey. This may indicate a varied set of self-presentation

goals propelled by the positivity bias in normative Facebook use [90], or a desire for

selective “performance” as per Goffman’s “frontstage/ backstage” metaphor for impression

management and social roles enactment [249], or for exhibitionism [305], or for receiving

instant or short-term social approval and gratification [662].

These disclosures may also stem from a need to maintain and bridge social capital around

transitory or minor happenings in one’s life, where sharing certain milestones, such an

imminent wedding, or leaving/starting a job has become customary — a recent survey found

that people “prefer sharing life’s milestones with their social network than in person” [80]. In

fact, sharing life milestones on social media may not only revive dormant social connections,

and simultaneously elicit responses or communication from an individual’s passive or weak

ties [594], but also enhance the emotional tone and impact of the event [123]. Finally, positive
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and anticipated life event disclosures may also be attributed to the “desire to use online

social media as a way for archiving life experiences and reflecting on identities,” especially

if the events are associated with liminality [260]. Taken together, the findings shine a light

on how the underlying norms of a social media platform, as well as its relationship to social

desirability and impression management, may impact the semantics of a life event from an

individual’s perspective, and the decision surrounding its online disclosure.

Complementarily, as societal norms motivate people to behave in particular ways [550],

a social media platform’s norms may encourage certain disclosures as well as impose certain

expectations that discourage people from sharing specific life events. Drawing on the litera-

ture on social comparison in social media [90, 462], people may not disclose very sensitive

events such as an extra-marital relationship, a family conflict, or pregnancy loss for fear of

social disenfranchisement, stigma, or shame [18]. This study found that individuals withheld

disclosing work-related and finance-related events on social media despite their occurrences

per self-reports on the survey. Building upon the Disclosure-Decision Making framework

proposed by Andalibi [18], one can conjecture that these decisions may be driven by people’s

specific imagined or actual audiences [403] including their mental representations [437],

wherein, due to concerns of context collapse [403], conflicting social spheres [64], surveil-

lance [236], or the (semi-) public nature of the platforms [305], certain life events may be

deemed less appropriate or share-worthy compared to others. Moreover, this study found a

lower likelihood of disclosing particularly intimate events or events too personal in their

scope on social media. The design of the Facebook platform may in itself be a key factor

driving self-regulatory decisions of non-disclosures [173]. Facebook particularly does not

enable anonymity, a factor known to be facilitating intimate content sharing [389]. With an

emphasis on “integrity and authenticity” as a community standard on the platform3, other

known disclosure risk mitigation strategies such as switching communication channels [271],

using multiple accounts [645], or sharing incorrect information [340], may not apply for life

3https://www.facebook.com/communitystandards/integrity_authenticity
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event disclosures on Facebook.

Summarily, I draw upon Newman, Lauterbach, Munson, Resnick, and Morris’s [437]

observations about sharing sensitive information on Facebook, that people carefully navigate

the tension between sharing vulnerability, needs, and health status information and the desire

to convey positive images of themselves. The findings point out an apparent dichotomy

that the same factors which encourage disclosure on Facebook (e.g., real identity, online

and offline friendship networks, closed/known audience) for some instances (e.g., wedding)

may also likely inhibit disclosure for some other instances (e.g., family conflict). This study

therefore emphasizes a need to understand the interplay between audience and norms of a life

event reportage in the online context. This can be studied via the lens of the socio-technical

gap [5] to understand the fundamental discrepancy in facilitation of socio-technical systems

— what individuals disclose online and what they disclose offline, and how the technical

design of the systems may encourage one set of practices or goals over the other [5].

Contextual and Affordance Differences The findings show a contrast between social

media disclosures and survey self-reports, which elicits a discussion of the respective

modalities’ affordances and context of use. We note that social media is naturalistic and

largely recorded in-the-present unlike the survey which was retrospective and researcher-

prompted; social media posting is also largely based on intrinsic motivation, whereas

survey responses are driven by extrinsic motivation (e.g., monetary incentive). That said,

both require individuals’ active effort to be recorded. Accordingly, this study derives an

interesting relationship with valence, significance and recency, and the ongoing nature of the

life events — event attributes along which the reportage significantly differed (Table 6.13).

As discussed above, audience and impression management norms may make social

media platforms to be less predisposed to sharing negative life events. However, why did the

participants feel comfortable sharing negative life events with an audience of researchers?

Compared to the social media audience that likely consists of strong and weak ties spanning
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online and offline interactions, researchers were strangers to the participants and comprised

a smaller and likely perceived to be a more private audience than social media audience.

These factors may have facilitated self-reporting of negative life events, free from concerns

of stigma, social acceptance, or negative self-image.

Second, the findings support prior work that self-reported survey responses to likely be

skewed to significant and recent events — significance and recency may cause disparities in

emotional content, or salience, as these factors can change over time, especially after long

time frames; emotional arousal may decay over time [148]. Extant literature lacks similar

knowledge about online life events disclosures. This study contributes to this knowledge that

significance and recency negatively associate with social media disclosures. The immediacy

of active attention needed for a significant event may explain the lower likelihood of online

posting. For instance, during a health emergency, an individual may not actively record a

social media post, as the situation may demand attention to other more immediate, important

needs. Again, in specific circumstances, significance of an event could be hard to understand

in-the-present but may be realized only after a period of time [180], e.g., a dinner outing with

a friend that becomes memorable after the friend’s sudden, unexpected demise. Evolving

significance can also lead to a different impression in memory, such as a case in this study

when an individual posted about a vacation (with their significant other) on social media, but

only self-reported about a breakup in the survey. Presumably, when the vacation began and

was shared on social media, it initiated positive feelings, but after it ended with a breakup,

the negative event stuck in the individual’s memory.

Third, ongoing events are more likely to be shared on social media versus a survey,

and that might relate to the social affordances of social media such as private messaging

or an ability to write on someone’s timeline; e.g., an individual in the process of moving

between two places may feel like they can gather help, support, and advice relating to the

move, as the event unfolds in real-time. These social affordances were absent in the survey

conducted in this study, since the audience constituted the researchers, and the participants
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were recounting about life events from the past. Therefore, this study supports and provides

complementary evidence to Haimson et al.’s work [285].

Ultimately, both in-the-present and retrospective perception of an event may depend on

an individual’s coping process [181, 657]. While validated surveys can measure how an

individual coped with a traumatic or stressful life event, social media data can provide a

stream of in-the-present recordings, e.g., this dataset contained a series of posts explaining

the logistics, stress and support related to hospitalization process of an individual’s child

(identified as a continuous category). Surveys may also cause priming effects [555] — if a

participant is inquired about a stressful life experience, they may undergo a psychological

stress by re-thinking about those experiences. Considering these differences, this work shows

that additional factors relating to events and individuals are important drivers of disclosures

(and non-disclosures). To this end, this study also extends prior investigations that have

examined the factors behind disclosure and non-disclosure on social media alone [18], by

asking questions around how individuals arrive at decisions regarding which life event to

disclose on social media versus self-report on a survey, and how these decisions straddle the

contexts of use and affordances of the two modalities.

Design Implications

Considerable HCI research has sought to design, develop, and adapt platforms around life

events like childbirth [164], gender transition [283, 284], and pregnancy loss [19]. Going

beyond instances of specific life events, this study reveals that people not only share varied

life events on social media, but also engage in selective sharing of life events, controlling

for individual differences and event attributes. This study reveals a need to design for

individuals and situations for both when disclosures do happen and when disclosures are

withheld. Doing so necessitates closing the socio-technical gap per Ackerman [5].
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Designing for Disclosure This study makes two design recommendations, first to scaffold

the disclosure process itself, and second to make platforms and their algorithms sensitive

to disclosures once they happen. Prior work reveals therapeutic and positive benefits of

disclosure and expressive writing [51, 206], including benefits like finding an outlet for

emotional release, self-acceptance, and solidarity with peers with similar experiences. This

work finds that despite the occurrences of negative life events, individuals may not always

disclose these events on social media, perhaps because of concerns noted as noted in the

theoretical implications. As also noted by Andalibi et al. [19] and Ernala et al. [206], future

research can therefore explore designing social media affordances that provide safe spaces

for opening up for individuals with varied needs. This can include enabling individuals to

create “trusted friend circles” based on various life event disclosures, e.g., a person may not

be comfortable about sharing a work-related event but may be comfortable doing so with a

set of trusted group of friends, therefore allowing targeted and staged disclosures [286, 644].

The findings suggest that users might be inhibited about disclosing negative or sensitive

events. Users chose to not disclose certain events, despite Facebook providing audience

control by design. To ease the process of recording an event privately or selectively, features

may be included whose design and user experience are explicitly tailored to support the

specific activity of recording life events, such as empowering users to define audiences

and to limit the responses types about their life event, letting them take conversations to a

different medium or outside of the platform, or having the provision of an expiration date on

how long a life event may remain shared.

In addition, social media has shown promise as an intervention medium for crisis and

wellbeing [124, 544]; we need to re-think alternative strategies for self-disclosures. For

instance, to support individuals concerned about the public-facing nature of online platforms,

tools may be built that emulate the benefits of personal blogging and journaling [131], to

serve as a timestamped archive of one’s thoughts and feelings around life events, empowering

individuals to self-reflect traces of life. This can be a part of identity work or a part of memory
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work. This study also found that disclosure behavior may reveal an individual’s momentary

and longitudinal behavior, such as some disclosures being associated with momentary

affective states (e.g., grief and joy), and others with lasting changes (e.g., moving to a

different place). Consequently, this study suggests designing tools to provide supportive

interventions around disclosures, including suggestions to rekindle interactions with social

ties or recommending support communities.

On personal journaling, Facebook currently allows users to post and limit visibility

to private. Some users send messages to themselves to record various events. However,

none of these are by-design journaling interfaces. A recommendation could be an explicit

private timeline space, where users can write private notes. Drawing motivation from

smart journaling [201], such design can enable users to record life events, choose what

to keep public and private, and also to toggle a private life event as public later in time.

Further, platforms can consider designing with flexible anonymity, which can help break

stereotyping or social expectations about social media posting of specific life events by

particular demographics such as males and younger adults (as also seen in this study).

Next, as noted before, algorithmic content recommendation on social media is largely

content and interests driven, showing personalized content based on individuals’ interests

and interactions with social ties. A lack of alignment of these recommendations with

happenings in one’s life, whether disclosed or undisclosed, can however have deep negative

repercussions. This study noted an anecdote when algorithmic curation of Facebook feed

was “inadvertently cruel” because it were not sensitive to an individual’s life event [415].

Therefore, like prior HCI work [20, 91], tailoring recommendations to be inclusive and

attuned to disclosed life events can increase the value people derive from these platforms.

Literature notes that positive content can potentially benefit individuals to feel better in

positive times, whereas supportive content may enable to feel comforted during adverse

times [20, 447]. Such uses of social media can be promoted by designing life event-inclusive

and -aware recommendation algorithms and affordances.
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Designing for Non-Disclosure This study reveals that a “one size fits all” approach to

scaffold online life event disclosures may not work. It matters not only that certain individuals

choose not to disclose, but also that each event is associated with unique characteristics and

circumstances. In particular, although this study did not solicit feedback from participants

about why they chose to disclose or not disclose a particular event, certain demographic

groups, such as males, older individuals, those low on agreeableness and extraversion

personality traits were less inclined to disclosing online. Essentially, from a therapeutic

perspective, the perceived efficacy of social media platforms as online social spaces to

disclose life events, may vary across individuals. Despite having a Facebook account and

using Facebook for other purposes, individuals may resist or reject using the platform to

share personal happenings, as an individual choice, social practice, or the event’s temporality

— a case for many of the participants. Scholars exploring technology non-use have found

that disenchantment often stems from the perceived banality and inauthenticity of social

interactions on social media platforms, particularly in contrast to offline communication [49].

Furthermore, some might feel socially disenfranchised to participate on a platform due

to socio-institutional pressures, harassment, or social anxiety [459]. Because a disclosure

might compromise an individual’s social network’s contextual integrity and the privacy

expectations of other stakeholders of the life event [18], some of these factors behind non-use

might play in this study as well. And yet, there were individuals who felt comfortable to

self-report a life event on the survey, to a different social audience (of researchers), albeit

smaller — indicating an implicit effort to weigh in the benefits and risks of disclosing life

events on one modality versus another.

So how do we then design to accommodate the needs of these individuals with varying

underlying decision-making processes around life event disclosures, and what would con-

stitute an efficacious social media platform design for them? Given that this study reveals

specific demographic differences among those who disclose and do not, how can design

ensure that the groups who do not disclose are not marginalized?
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Instead of designing only to encourage life event sharing on social media and risking

“problematizing” the non-disclosers, we provide design suggestions drawing from scholars

who have called for the role and perspective of the non-user to be recognized and val-

ued [673]. First, platform designers need to account for social media non-use as a signal

to modulate content recommendations. Essentially, design features may be built that allow

individuals to curate or select what they would like to see and not see on the platform,

depending on whatever their undisclosed current life event(s) might be. Second, drawing

upon research on designing for technology non-use [49, 119, 481], platforms can accommo-

date alternative forms of participation for an individual, as a coping mechanism following

an undisclosed life event, that does not involve being forced to deactivate or delete their

social media account, or to stop social sharing and interaction altogether. For instance,

individuals can switch platform settings to “no recommended content” and only visit parts

of the site which they may feel are conducive to their current life circumstances. Broadly

speaking, we draw from Baumer et al. [49], who noted that resistance to early telephone and

electrical technology, particularly among rural populations, led producers to develop new

designs and infrastructures better suited to rural life [348]. Similarly, this study encourages

researchers and designers to make social media platforms life event-sensitive in a way that

not only considers potential barriers preventing disclosures, but also provides agency in the

decision-making processes behind non-disclosures.

Ethical Implications

Despite the best of intentions of a platform and designers to provide personalized content,

works such as this, can lead to expectation mismatches, and individuals may perceive intru-

siveness and dissatisfaction about such algorithmic content curation without consent [214].

Further, identifying life event disclosures on social media can lead to other ethically ques-

tionable consequences such as targeted advertising [319], including compromised privacy,

defying expectations, and damaging relationships — reminiscent of the case of the woman
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whose pregnancy was discovered by a supermarket chain without her knowledge [301].

Although personalizing ads around positive events (e.g., new home, wedding) may bear

both business and individual advantages, the same around negative life events can not only

exacerbate an individual’s situation and wellbeing, but also can be deemed unethical and

intrusive [375].

Furthermore, people’s online disclosures of life events can be (mis)used to infer high-risk

decision outcomes in one’s offline life such as job, insurance coverage, financial support, or

obtaining a property mortgage. At the other end of the spectrum, when people do not disclose

their life events, it might prevent such misuse, but they may be disadvantaged in deriving

the benefits that disclosing individuals might be able to derive from the platform, such as

access to support, social capital, or social approval. From a social computing standpoint,

both disclosures and non-disclosures of life events on social media can lead to forming new

social conventions and norms on the platform with repercussions on an individual’s life, e.g.,

research already notes the positivity bias on social media [90], and non-disclosure of negative

events may make people feel worse when they experience a negative life event. Overall, these

ethical complexities call for better understanding and guidelines regarding what platforms

owners and decision makers can and should do with people’s (non)-disclosures of life events,

for what purpose, and the extent to which transparency is baked into these uses.
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CHAPTER 7

OBSERVER EFFECT IN SOCIAL MEDIA BEHAVIOR

The previous chapters reveal the potential of social media in inferring psychosocial dynamics

of individuals and collectives in situated contexts [155, 528, 530, 531, 536, 544]. We also

see how we can overcome the limitations of social media data by using complementary

multimodal sensing data, and how it is important to introspect and interpret these data-driven

assessments given the real-world implications. We note that most of the studies on social

media based assessments rely on retrospectively collected data. The extant literature informs

and motivates human-centric technologies to improve wellbeing in real-time and prospective

settings. However, prospective use of social media based assessments would bring in new

challenges, and which are yet to be studied and addressed.

In contrast to retrospective settings, prospective social media studies can likely suffer

from “observer effect”, or the phenomenon that individuals might deviate from their nor-

mative behaviors, attributed to the awareness that they are being watched or studied [458,

609]. The social ecological model theory posits that human behavior is embedded in the

complex interplay between an individual, their relationships, their communities, and societal

factors [102]. While this theory explains the potential of social media as a viable sensor

of human behavior, it also points out a caveat — the observers, who are also a part of a

subject’s ecology, may affect the subject’s behavior (or in other words, the observer effect).

This chapter explains my investigation towards measuring and studying observer effect in

social media sensing studies on wellbeing.

Therefore, if we envision a future with social media technologies for wellbeing inter-

ventions, we should ask how these algorithms would perform if we conduct prospective

data collection? The algorithms that are built on retrospectively collected data may not be

as effective in prospective settings. Despite the potential and the evidence, the validity of
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adopting computational social science on big data has been critiqued regarding its applica-

bility in real-world and in practice [73, 366, 525, 624]. Ruths and Pfeffer (2014) pointed

out that these studies may misrepresent or be ineffective in the real-world [525]. Lazer et

al. (2014) noted how the Google Flu predictor algorithm that uses google search behavior,

over-estimated the number of flu visits in real-time, even though it performed exceptionally

well on historical data [366].

The validity and in-practice reliability of human-centered big data technologies suffer

due to the unpredictability and complexity in human behavior along-with unaccounted

confounds [452]. Again, the ecological validity of these technologies remain unattested

because observer effect is not typically accounted for. As posited in psychology and social

science literature, “observer effect” is the phenomenon that people are likely to alter their

behavior with the awareness of being monitored or observed [609].

Although social media is a passive sensor in terms of data collection, it is dependent on

the active creation by individuals in their self-initiated desire to engage on a social media

platform. Given that social media behavior is a form of intentional and conscious behavior,

or a behavior that individuals can alter at their will in case they feel “observed”, observer

effect remains a basic unexplored phenomenon that may bias observations from social media

sensing of human behavior.

Historically, observer effect has been hard to study because researchers could only access

data generated after participant recruitment. However, measuring observer effect necessitates

access to a subject’s normative and non-observed behavior, or the counter-factual how the

subject would have behaved without the presence of an observer. In contrast, social media

is a longitudinal and historical data stream, and allows access to years of an individual’s

behavior on the platform, including pre-enrollment data. This provides the opportunity to

build behavioral models on normative or “non-observed” behaviors. By definition, observer

effect can be avoided if studies are conducted without the awareness of the participants. For

instance, retrospective and observational data is one such solution (as also described in the
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previous chapters). However, these settings are not always applicable, such as in identifying

historically unobserved behaviors or conducting proactive interventions. Alternatively,

researchers can conduct experimental studies without participants’ awareness. For example,

the Facebook emotion contagion study did not seek the consent of participation and did

not make the users aware that their social media feeds were modified for experimental

purposes [357]. Although this study successfully uncovered valuable insights about people’s

affective behaviors on social media, it was heavily critiqued on ethical grounds [331]. Again,

only a select few researchers have privileged access to conduct such studies, and those who

do, may be institutionally constrained in studying or revealing certain phenomena [73, 394,

624].

As boyd and Crawford (2012) noted, these practices (of conducting studies and ex-

periments without participant awareness) can reinforce the troubling perception of these

technologies as “Big Brother, enabling invasions of privacy, decreased civil freedoms, and

increased state and corporate control” [73]. Moreover, the best practices of research entail

obtaining informed consent from participants, making them aware of what data they share

and how it will be used. But this also increases the likelihood of observer effect as partic-

ipants may self-alter their behaviors as postulated in theories such as social desirability,

psychological reactance, self-presentation, self-monitoring, and reasoned action, to name a

few [249, 390, 587, 598]. A better understanding of observer effect in social media sensing

studies would make researchers aware of what they can expect and make us think towards

designing and developing measures to correct and account for this effect in future study

designs and observations [525].

Motivated by the above factors, I examine observer effect on social media behavior, by

asking the following research questions:

• RQ1. What is the prevalence and degree of observer effect in social media behavior?

• RQ2. How psychological traits of individuals explain their likelihood to show observer

effect in social media behavior?
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My examination is situated within a year-long multimodal sensing study, where par-

ticipants consented social media data, particularly Facebook. This work draws motivation

from person-centric studies in psychology research of clustering individuals on similar

psychological traits, and from causal-inference research in minimizing the confounds. I

adopt time-series and statistical modeling to measure how individuals deviated from ex-

pected behaviors after enrolling in the multimodal sensing study, or their awareness of being

“sensed”. I operationalize observer effect in two dimensions of social media activity, 1)

behavioral changes, and 2) linguistic changes. Within behavioral changes, I measure the

deviation in quantity and verbosity of posting behavior, and within linguistic changes, I

measure the topical and psycholinguistic changes. This study reveals that observer effect

indeed occurs, but its occurrence varies across participants in various ways. For instance,

individuals with high cognitive ability and low neuroticism show an immediate decrease in

social media posting after enrollment, but their behaviors get closer to normalcy over time.

In contrast, individuals with high openness do not show any immediate changes in posting

quantity, but their posting significantly increases over time. Linguistically, most individuals

show a decreased use of first person pronouns, which reflects reduced sharing of intimate

and self-attentional content. While some individuals increase posting about public-facing

events, others increase posting about social and family gatherings. Finally, I explain the

behavioral changes with respect to psychological traits in a theory-driven fashion.

Theoretically, this work advances our knowledge about how individuals varying on psy-

chological traits could differently change social media behaviors. These behavioral changes

are explained by social science and psychology theories, including self-monitoring [587],

public self-consciousness [26], and psychological reactance [78]. Methodologically, this

work contributes a computational and causal framework of modeling and inferring observer

effect in human-centered studies in general, and social media sensing in particular. This

work provides insights regarding whether observer effect occurs, how long does it last, and

how does its occurrences vary across participants. I discuss the implications of this work in
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recommending strategies to correct biases due to observer effect in social media sensing

studies.

7.1 Background and Related Work

7.1.1 Observer Effect in Research

Definition

Literature in psychology and social science posits that people are known to alter their

behavior with the awareness of being monitored or observed. This phenomenon is known as

the “observer effect” or the “research participation effect” or the “experimenter effect” [512].

This effect is also popularly called the “Hawthorne effect” as historically this effect was first

seen in a series of experiments between 1924 and 1939 in the Hawthorne Works plants [118,

513]. Observer effect has been commonly cited to affect the reliability of observations in

studies [343]. For our purposes, we use the following definition as outlined in a systematic

review done by McCambridge et al. (2014).

“The Hawthorne effect concerns research participation, the consequent awareness of

being studied, and possible impact on behavior.” — McCambridge et al. 2014 [609]

Given that there are several arguments around the use and appropriateness of the term

and context corresponding to “Hawthorne Effect” [118, 121, 450, 609], our work adopts the

term, “observer effect” for disambiguity and consistency purposes.

Hawthorne Studies

The Hawthorne studies were originally conducted at the Hawthorne Works Plant near

Chicago where six studies were conducted between 1924 and 1933. These studies were

longitudinal in nature spanning between several months and several years. These studies

were designed to understand and improve worker productivity at the plant. Initially, these

studies were investigating the effects of different levels of illumination on productivity.
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However, these experiments inconclusively found that no matter what timing or kind of

illumination was used, worker productivity always increased. This shifted the interest of

researchers that these changes in behavior (or productivity) was possibly not due to the

changes in illumination level per se, but due to the awareness of the workers of being

monitored or “observed”. This shift of interest led to examining a variety of social and

psychological factors that contribute to changes in human behavior [121].

A number of social science and psychology theories have been proposed in the last

century that examines human behavior, and explains behavioral change with respect to

observer effect in different settings. Guerin (2010) reviewed research on behavioral change

in the presence of others (social presence), and postulates the phrases of “social facilitation”

and “social inhibition” as opposite effects on a worker’s performance. This effect is also

described as a form of “reactivity” as individuals modify an aspect of their behavior in

response to a phenomenon (awareness of being observed) [342, 598]. Based on the social

desirability theory, conformity and social desirability considerations can lead behavior to

change in line with these expectations [121, 265]. Observer effect is also frequently studied

in epidemiological and clinical studies in order to minimize confounds in findings [118, 225].

Observer effect has also been attributed to affect methodologies such as field observations

and ethnography [367], and is considered to be one of the biggest challenge and long

described as the “Achilles heel” of participant research [458, 584].

Researchers have been interested in limiting experimenter-observer interactions that may

cause observer effect [512]. Longitudinal studies have shown promises of mitigating such

effects because participants either adapt to normalcy or become less aware of being observed

over time [678]. Alternatively, observer effect can be considered to be a strength (instead of

limitation) in certain settings, as participants may behave more ethically, conscientiously,

and efficiently [427]. Observer effect is not necessarily viewed as surveillance can also

contribute towards increased inter-accountability due to co-presence [52].

However, none of the above may apply in our particular setting of social media sensing.
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Social media data, by its very nature and strength, is created by an individual in naturalistic

settings by their self-motivated and self-initiated will, and is collected passively and unob-

trusively. An individual who consents to sharing their social media data, may not actively

feel aware of being observed all the time. This awareness might influence certain behavioral

amendments that essentially normalize over time, or a process known as habituation in be-

havioral sciences [117]. To understand the likelihood and extent of observer effect on social

media behavior, we examine social media behavior following enrollment in a year-long

multisensor study. By adopting a causal-inference approach that measures the deviation

in an individual’s post-enrollment social media behavior from their expected behavior, we

minimize the confounds and delineate observer effect from other behavioral aberrations at

chance. This work makes theoretical contributions to the general interest of of understanding

and leveraging social media sensing for human behavior.

7.1.2 Behavior Change on Social Media

Over the years, people’s social media behavior has been studied in a variety of ways, span-

ning across prediction and inference studies on information dissemination, political interests,

stock market, and wellbeing [2, 71, 106]. The growing evidence of the relationship between

human behavior, psychology, and language allows us to infer these behavioral changes when

we analyze longitudinal social media data. Similar to our physical world, people’s online

presentation is a factor of their social network [189, 305]. Guillory and Hancock found that

the public-facing nature of platforms such as LinkedIn influences an individual’s account-

ability and reduces deception in their self-description of their professional portfolio, which

also aligns with Donath’s early research on identity and deception in online spaces [183].

Reinecke and Trepte (2014) found that social media provides an environment for online

authenticity, an in fact authentic self-presentation contributes towards positive psychological

wellbeing [501]. Similarly, a body of literature revealed evidence regarding how social

media facilitates candid self-disclosure for an individual [165, 506].
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In the specific interest of human-centered studies of wellbeing dynamics, prior work has

studied behavioral changes on social media in several contexts. For example, De Choudhury

et al. (2013) examined social media behavior changes around a major life event, particularly

postpartum changes in behavior and mood of new mothers along the dimensions of social

engagement, emotion, social network, and linguistic style [162]. Golder and Macy (2011)

studied the variability in mood and sentiment in weekends and weekdays. Other longitudinal

studies have examined behavioral changes around exogenous or endogenous, anticipated or

unanticipated events, e.g., antidepressant use [540], counseling advisories [544], alcohol and

substance use [346, 380], diagnosis with mental health conditions [206, 277, 278], suicidal

ideation [167], and so on. Relatedly, Ernala et al. (2018) adopted the Social Penetration

Theory to operationalize intimacy of self-disclosure and studied how it varies with respect

to audience engagement on social media [205].

Researchers have also explored behavioral changes around topics related to observer

effect, such as privacy. Back in 2014, when Zhang et al. studied “creepiness” and privacy

concerns related to social media use, they found concerns shifting from boundary regulation

to behavior tracking by social media platforms for targeted advertising [682]. However,

social media- and the web- based behavioral inferences have evolved since then, and have

also come under ethical and political scrutiny for privacy breaches such as the Cambridge

Analytica scandal on Facebook [94]. This has also renewed attention to the challenges

that may arise when data is appropriated for surveillance by stakeholders, e.g., workplace

surveillance [236]. At the same time, concerns related to audience, boundary, and disclosure

regulations are evident on social media, people want themselves to be viewed in particular

ways across different audiences [189, 338, 403, 623]. As per Goffman’s theory of self-

presentation, individuals may present two kinds of information (including on social media)

— one that they intend to “give off”, and one that “leaks through” without any intention [249,

421, 666]. One strategy of boundary regulation, self-censorship is known to be prevalent on

social media [151, 403]. Self-censorship occurs when social media users prevent themselves

247



from posting or conducting a behavior despite a self-initiated initial desire to do so [151]. For

example, Wang et al. studied self-censorship with respect to regretful thoughts [654]. Also,

privacy-concerns may lead to changes in social media behavior, in terms of presentation,

censorship, and information sharing [6, 623]. However, researchers have also found an

apparent “privacy paradox”, i.e., despite the awareness privacy concerns, individuals may

share more personal information on social media [40]. This shows that people’s social media

behavior has been found to be complex, which also depends on each individual’s personality,

perceptions, and beliefs as well as external factors [273, 500].

In addition, the earlier chapters also revealed a variety of factor may describe why and

how an individual self-describes themselves on a social media platform (e.g., LinkedIn

and Facebook) [536, 538]. While social media data is a useful signal to analyze behavioral

changes, people’s perceptions about the use of social media may significantly affect their

behavior. The current study explores this phenomenon by leveraging longitudinal social

media data to delineate effects of observer effect on people’s social media behavior. While

no theoretical framework can be directly adopted to understand behavior changes around

observer effect, in the next section I review suitable behavior change theories that help in

explaining social media behavior change in the context of observer effect.

7.1.3 Theories of Behavior Change in Research

Social scientists and psychologists have proposed numerous theories related to behavioral

change. The socio-cognitive theory adopts an agentic perspective to human development,

adaption, and change by distinguishing three modes of agency, personal, proxy, and col-

lective [38]. The situated identity theory states that relevant cues in behavioral settings

are first translated to identity potentials which provide the basis for specific behavioral

choices [13]. Self-consciousness is another construct that may influence one’s strategic self-

presentation [26]. Again, the concept of psychological reactance describes that individuals

have certain freedoms regarding behaviors, which if reduced or threatened, they react in
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Figure 7.1: Integrative model on behavior change as proposed in [218]

order to regain them [78]. Introduced by Snyder, the concept of self-monitoring posits that

people self-monitor their self-presentations, expressive behavior, and non-verbal affective

displays [587]. Self-monitoring can be considered to be a form of personality traits that

regulate behavior to accommodate social situations [587].

Further, Fishbein and Capella 2006 note, “Although there are many theories of behavioral

prediction such as the Theory of Planned Behavior [8, 9], the Theory of Subjective Culture

and Interpersonal Relations [621], the Transtheoretical Model of Behavior Change [490],

the Information/Motivation/Behavioral-skills model [219], the Health Belief Model [53, 516,

517], Social Cognitive Theory [35, 37], and the Theory of Reasoned Action [217], a careful

consideration of these theories suggests that there are only a limited number of variables that

must be considered in predicting and understanding any given behavior [216]” [218]. The

integrative model as per Fishbein (2000) attempts to bring together a number of theoretical

perspectives and is presented in Figure 7.1 [218].

This dissertation adopts the above theories and variables to interpret and explain observer

effect in social media behaviors. After quantifying the deviation in post-enrollment actual

and expected behaviors, I investigate how people’s individual differences could likely explain
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the behavioral changes, by situating in the above theories. Further, the insights from this

work leads to generating hypotheses which can be tested and evaluated in future research.

7.2 Study and Data

Like the studies in the previous two chapters, the data for studying observer effect comes

from the Tesserae project (section 4.1). As described before, the participants responded

to initial survey questionnaires related to demographics, and trait-based measures relating

to personality, affect, sleep, and executive functions. The participants were requested to

remain in the study for either upto a year or through April 2019. The study enrollment was

conducted from January 2018 through July 2018.

7.2.1 Social Media Data

The Tesserae project asked consented participants to authorize their Facebook data, unless

they opted out, or did not already use Facebook. The enrollment briefing and consent process

explicitly explained that the study participation did not necessitate them to use social media

in a particular fashion, and they were expected to continue with their typical social media

use. The participants authorized access to social media data through an Open Authentication

(OAuth) based data collection infrastructure developed in Saha et al. [528].

Given that Facebook is the most popular social media platform [262] and its longitudinal

nature has enabled several of human behavior [166, 664], it suits our problem setting of

understanding observer effect in social media behavior. Out of the total 572 participants who

provided access to Facebook data, 532 made at least one post on their Facebook timeline.

Table 7.1 summarizes the Facebook dataset of Tesserae participants, and I find that there is

roughly 82 months data per participant in the pre-enrollment period, and roughly 5 months

data per participant in the post-enrollment period. Among these participants, we apply a

filter of participants with at least 60 days of post-enrollment data, leading to 316 participants,

whom we examine for observer effect in the rest of the study.
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Table 7.1: Summary of pre- and post- enrollment Facebook datasets.

Before Enrollment After Enrollment

Type Range Mean Range Mean

Posts 26-4,472 865 8-964 101
Comments 34-10,228 1,593 5-1,104 175
Likes 62-52,139 6,536 15-4,540 940
Duration (months) 0-160.27 82.52 0-12.87 4.59

Table 7.2: Summary of demographics and individual differences of 316 participants whose
data is being studied for observer effect.

Covariates Value Type Values / Distribution

Demographic Characteristics
Gender Categorical Male | Female
Age Continuous Range (21:63), Mean = 36.36, Std. = 10.28
Education Level Ordinal 5 values [HS., College, Grad., Master’s, Doctoral]

Job-Related Characteristics
Income Ordinal 7 values [<$25K, $25-50K, ... , >150K]
Tenure Ordinal 10 values [<1 Y, 1Y, 2Y, ... 8Y, >8Y]
Supervisory Role Boolean Non-Supervisor | Supervisor

Cognitive Ability (Shipley)
Fluid (Abstraction) Continuous Range (5:24), Mean = 16.93, Std. = 2.95
Crystallized (Vocabulary) Continuous Range (18:40), Mean = 33.55, Std. = 3.57

Personality Trait (BFI)
Openness Continuous Range (2.2:5.0), Mean = 3.82, Std. = 0.59
Conscientiousness Continuous Range (1.9:5.0), Mean = 3.91, Std. = 0.64
Extraversion Continuous Range (1.7:5.0), Mean = 3.42, Std. = 0.66
Agreeableness Continuous Range (2.3:5.0), Mean = 3.93, Std. = 0.55
Neuroticism Continuous Range (1.0:4.6), Mean = 2.46, Std. = 0.78

Affect and Wellbeing
Pos. Affect Continuous Range (13.0:49.0), Mean = 34.15, Std. = 5.82
Neg. Affect Continuous Range (10.0:40.0), Mean = 17.06, Std. = 4.88
Anxiety Continuous Range (20.0:67.0), Mean = 37.05, Std. = 9.28
Sleep Quality Continuous Range (1.0:16.0), Mean = 6.72, Std. = 2.51

7.2.2 Self-Reported Survey Data

Tesserae project’s enrollment process included initial demographics surveys (age, gender,

education, income, etc.), and surveys of self-reported psychological constructs as explained

in section 4.1

7.2.3 Preliminary Analyses

First, I conduct some feasibility and preliminary tests on our data for our study.
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Statistical Power

Power analysis in statistics estimates the minimum sample size for a study to make significant

inferences on a given population [607]. Likewise, I use power analysis to examine if this

study has sufficient sample size of participants to make reasonable inferences about the

population. This study’s participant pool belongs to information workers in the United

States. According to U.S. Census Bureau, a rough estimate on the number of information

workers in the U.S. is 4.6 million [503]. I calculate a sample size that is representative of

this population with a 95% confidence interval and 5% margin of error, this comes out to be

a sample size of 385. Given that the net social media sample size is 574 participants, out of

which, usable data for studying observer effect is for 316 participants, this study assumes to

have a reasonable sample of information workforce in the United States.

Quantity of Posting

Posting behavior is a prominent social media behavior that has revealed significant signals of

human behavior in prior work [162, 206, 539, 544]. I measure the average posting behavior

of the participants over time and around their enrollment in the study. Figure 7.2 shows the

daily average posting behavior of the participants relative to the day of enrollment, where

day=0 corresponds to the enrollment day for the participants. We notice an apparent bump

in the average number of posts per day post-enrollment in the study.

Expressive Behavior

I also examine the changes in expressive behavior of the participants. For this, I use the psy-

cholinguistic lexicon LIWC [613] to obtain the psycholinguistic changes in the participants’

post following enrollment in the study. Figure 7.3 reports the effect sizes comparing pre-

and post- enrollment normalized use of psycholinguistic categories across the participants.

A positive effect size indicates greater use of the category post-enrollment, whereas a neg-

ative effect size indicates lower use in the post-enrollment period. Effect size (Cohen’s d)
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Figure 7.2: Average number of posts per day across all participants on relative offset from
their day of enrollment. Day 0 indicates the day of enrollment.

is considered to be a significant difference if its magnitude is greater than 0.15. We find

that at an aggregated level, multiple psycholinguistic categories show significant changes.

For example, considering pronoun use, first person pronoun use decreases, which might

indicate a decreased sharing of intimate content and decreased self-attentional focus [131].

In contrast, the use of first person plural, second, and third person pronouns increase. We

also find a decrease in the use of cognition related words (such as cognitive mechanics,

discrepancies, inhibition, negation, etc.). We also find a significant decrease in affective

categories of anger, sadness, and swear.

The above preliminary analyses indicate certain changes people’s behavioral and expres-

sive social media use following enrollment in the study at an aggregated level. This motivates

us to examine the changes in a much more rigorous and robust fashion. Given that not all

individuals are the same, this study borrows from person-centric approaches to examine the

changes in cohorts (clusters) of similar individuals on psychological constructs [154].
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Figure 7.3: Effect size (cohen’s d) comparing before and after enrollment datasets of users
across psycholinguistic attributes. A positive cohen’s d indicates that post- enrollment data
Cohen’s d magnitude smaller than 0.20 is considered to be small difference.

7.3 Methods

This study operationalizes observer effect as the deviation in actual post-enrollment social

media behavior from expected (or normative) behaviors. In particular, I measure the changes

in two dimensions of — 1) behavioral changes (posts made and engagement sought), and

2) linguistic changes (topics and psycholinguistics). I examine these changes in a person-

centric approach of clustering individuals on psychological traits. This section describes my

approach of clustering individuals followed by measuring the dimensions of social media

behavioral change.

7.3.1 Clustering Participants on Intrinsic Traits

Typically, prediction models are studied on the entire dataset of participants, also termed

as variable-centric or generalized prediction approaches, where a single model is built

for the entire training data available. However, in contrast to many other datasets, social

media data presents unique challenges, as it is sensitive to people’s social media use and

254



0 10 20 30 40 50
Number of Clusters (k)

60

80

100

120

140

160

S
S

D

k
=

5

Figure 7.4: Elbow plot to estimate the optimal number of clusters by varying number of
clusters (k) and mean sum of squared distances to the cluster centroids (SSE).

may significantly vary across individuals. Although personalized approaches could help

overcome this challenge [391, 527], it is hard to conduct personalized examinations on

social media data, because this data suffers from sparsity issues, compromising the statistical

power. Therefore, drawing on prior work [154, 532], I adopt a middle ground that balances

the trade-offs between too personalized and too generalized models. In particular, I cluster

individuals with similar traits, and then examine the outcomes per-cluster. This approach is

known to balance both between-individual homogeneity and within-individual heterogeneity

in our behaviors [532].

I adopt a k-means clustering approach to cluster individuals on intrinsic traits as col-

lected via ground-truth surveys (personality traits, cognitive ability, affect, anxiety, and

wellbeing). I employ the elbow-heuristic to obtain the optimal number of clusters (k) in our

approach [552]. Figure 7.4 shows the elbow plot of mean sum of squared distances to the

cluster centroids with respect to the number of clusters (k), roughly estimating an optimal

number of clusters at k=5.

Consequently, I conduct k-means (k=5) clustering on the intrinsic traits of individuals

to cluster the initial 513 individuals in the dataset. We obtained five clusters (C0 to C4),
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Figure 7.5: Distribution of traits across clusters of individuals.

Table 7.3: Summary of descriptions of clusters on psychological traits.

Cl. N Characteristics

C0 60 High (Conscientiousness, Sleep Quality), Low (Openness, Cognitive Ability)
C1 66 High (Cognitive Ability), Low (Neuroticism)
C2 44 Low (Extraversion, Agreeableness, Conscientiousness, PA, Sleep Quality), High (Neuroticism, Cognitive Ability,

NA, Anxiety)
C3 97 High (Extraversion, Agreeableness, Conscientiousness, PA, Sleep Quality), Low (Neuroticism, NA, Anxiety)
C4 49 High Openness

containing 93, 115, 70, 152, and 83 members respectively. Figure 7.5 shows the average

distribution of the traits and Table 7.3 summarizes the characteristics of the five clusters.

7.3.2 Measuring Behavioral Changes

Measures to Quantify Behavioral Changes

I examine the participants’ post-enrollment behavioral changes on social media. This in-

cludes the changes in quantity and verbosity of the posts. Additionally, social media behavior

is also characterized by social networking and engagement received from others. Therefore, I

also examine the changes in the quantity of likes and comments received on the participants’
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posts. I explain the measures below.

Posting Behavior. We examined social media posting behavior in two measures — 1)

Quantity of posting, i.e., the daily average number of posts, and 2) Verbosity of posting, i.e.,

the daily average number of words.

Engagement Received. I examine the engagements received on social media posts, in

terms of 1) Likes, i.e., the daily average number of likes received, and 2) Comments, i.e, the

daily average number of comments received.

Modeling and Quantifying Behavioral Changes

Drawing on interrupted time series and synthetic control based causal approaches [48, 408],

I compute the deviation in actual behavior from the expected behavior of the participants

as modeled on their historical behavior. For each cluster, I build autoregressive models

(ARIMA) to predict post-enrollment expected behaviors of the participants. I train the

models on the pre-enrollment data, using a 80 : 20 split (80% for training and 20% held-out

for testing), and applied grid search to optimize for the best parameters of the time series

prediction models. The models are evaluated on the 20% held-out data, as symmetric mean

absolute percentage error (SMAPE) which quantifies errors in the range of 0 to 100, where

lower values indicate a better predictive model. Besides, I measure the statistical significance

in difference of actual and expected behavior using paired t-tests and effect size (Cohen’s d).

Conducting Placebo Tests

Further, I need to ensure that the effects observed in the study are most likely an artifact of

study enrollment, and not due to other confounds or at chance. For this purpose, I conduct

placebo tests drawing on permutation test approaches from prior work [17, 537]. Within the

pre-enrollment data, I permute (randomize) on several placebo dates. I assign 150 placebo

dates, and repeat the above time series comparison around the placebo dates — for every
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placebo date, I compute the t-tests in the post- placebo date actual and predicted time series

data. Then, over all the permutations of placebo dates, I compute the probability (p-value)

of significant differences around placebo dates. A p-value lower than 0.05 would reject the

null hypothesis that the significance is by chance, also revealing the credibility about any

significant changes observed around the (real) enrollment date.

7.3.3 Measuring Topical Changes

Topics are a useful means to understand the content of people’s social media expres-

sions [111]. I conduct topic modeling in our dataset to examine how the prevalence and

diversity of topics evolve following study enrollment. First, to automatically extract topics, I

employ the widely adopted Latent Dirichlet Analysis (LDA) on the dataset [68]. LDA is

known to produce stable and interpretable topics, and has often been used in social media

and human behavior research [111, 206, 504].

Building Topic Models

To identify the optimal number of topics in our dataset, we draw on the recommendations

from Wallach, Murray, Salakhutdinov, and Mimno and Chang, Boyd-Graber, Wang, Gerrish,

and Blei. That is, I vary the number of topics upto 25, and semi-automatically evaluate the

quality of topic models, by combining the use of topical coherence scores as well as manual

evaluations. Topical coherence score quantifies the degree of semantic similarity between

high scoring words within a topic [413]. Figure 7.6 plots the coherence scores on varying

the number of topics from 2 to 26, suggesting that the highest coherence is achieved at

around the number of topics (n) as 10. In addition, I, along with two other collaborators

in the research team, manually evaluate the topical distribution for n=8, n=10, and n=12.

We find the topical distributions at n=8 and n=10 to be less semantically coherent, with a

substantial increase in noisy keywords. Therefore, as guided by both coherence scores and

manual examination, I use topic modeling for n=10 topics for our ensuring analysis.
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Figure 7.6: Topical coherence scores on LDA topic modeling with varying number of topics.

Interpreting Topics

After building the topic models, I assign interpretable labels to topics and keywords. For this

purpose, three members of the research team (including me) design an interpretive annotation

to identify coherent themes in the keywords per topics. The topics are first inductively and

independently coded with implied themes. Then the codes are compared and agreed upon

to assign final thematic labels per topic. The thematic category of a topic is implied from

the within-topic coherence and between-topic separation of keywords. These themes are 1)

Travel and Locations, 2) Food and Drinks, 3) Holiday Plans, 4) News and Information, 5)

Work-Life Balance, 6) Family Gathering, 7) Social and Sports, 8) Greetings and Celebration,

9) Friends and Family, and 10) Acivities and Interests. Table 7.4 shows the 10 thematic

categories and top occurring keywords per topic, along with example paraphrased post from

our dataset.

7.3.4 Measuring Psycholinguistic Changes

Another important dimension to understand people’s expressiveness and social media

behavior is through psycholinguistics, which is known to associate with psychological
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Table 7.4: Thematic categories of topics identified in our dataset.

Theme Topic Words Example post

Travel & Locations country, green, baby, miss, right, chicago, sad,
need, let, denver, mean, airport, hello, way, win,
begin, yum, national, cubs, joanie

Smiles all around after a good ATD conference
together in Denver.

Food & Drinks lol, new, ready, room, sweet, boy, getting, waiting,
finally, time, chicken, need, delicious, chicken, got,
cheese, food, beer, gotta, yeah, guess

Chicken on the grill, beef roast on the cutting
board, regular and sweet potatoes in the oven.
Guess who’s not cooking tomorrow!

Holiday Plans christmas, school, vote, today, true, high, trip,
look, season, awesome, johnson, merry, news,
summer, party, check, raise, mom, family

Morning hike, trip to the beach, and relaxing at
our rental!

News & Informa-
tion

like, people, time, things, trump, think, watch,
know, looks, right, got, thing, want, need, good,
going, bad, stop, run, better, org

Climate models want to change the way we live
... should we listen? It’s a short video, watch it.

Work-Life Balance home, work, day, got, yes, new, today, time, to-
morrow, little, house, going, like, car, snow, hours,
bed, dog, night, way

After work. Only one thing on my mind.

Family Gathering good, morning, great, night, fun, day, time, week-
end, dinner, week, friday, today, tonight, party,
work, family, team, going, view, date, girls, week-
end

Had a great visit with Otto & family!

Social & Sports game, want, tony, retweeted, play, south, come,
bend, dame, notre, it’s, tulio, tickets, world, need,
free, shit, dace, wants

Watched my team in India play a friendly cricket
match last night and got a lesson on the dif-
ference between batting in baseball versus
cricket.

Greetings & Cele-
bration

day, happy, love, birthday, wedding, today, an-
niversary, halloween, disney, beautiful, mom, http,
best, little, year, life, wish, challenge, thank

Wishing my beautiful daughter a wonderful
birthday. Love you baby girl.

Friends & Family years, time, love, family, friends, year, life, thanks,
kids, amazing, best, know, today, old, wait, great,
ago, days, help, people

Enjoying St Helena, brunch and wine tasting
with my son and friends.

Activities & Inter-
ests

like, read, years, wow, know, love, good, think,
people, music, interesting, post, facebook, ago,
copy, itś, wheels, place, favorite, book

First book Iv́e read in a long time that I couldn’t
put down. The Life We Bury

states and attributes [166, 564]. To conduct psycholinguistic analysis on our dataset, I use

the widely adopted lexicon of Linguistic Inquiry and Word Count (LIWC). LIWC is a

psychologically validated lexicon that allows to categorize the pre- and post- enrollment

social media data into psycholinguistic categories of: 1) affect (categories: anger, anxiety,

negative and positive affect, sadness, swear), 2) cognition (categories: causation, inhibition,

cognitive mechanics, discrepancies, negation, tentativeness), 3) perception (categories: feel,

hear, insight, see), 4) interpersonal focus (categories: first person singular, second person

plural, third person plural, indefinite pronoun), 5) temporal references (categories: future

tense, past tense, present tense), 6) lexical density and awareness (categories: adverbs, verbs,

article, exclusive, inclusive, preposition, quantifier), and 7) personal and social concerns

(categories: achievement, bio, body, death, health, sexual, home, money, religion, family,

friends, humans, social). For each cluster, I measure the normalized occurrences of each
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Table 7.5: Summary of behavioral deviations in post-enrollment compared to expected (or
predicted) behavior per cluster in terms of SMAPE, paired t-tests, and effect size (Cohen’s
d). Statistical significance reported as p-value, *<0.05, **<0.01, ***<0.001. Positive t or d
indicates higher values in actual time series compared to the predicted time series.

Cluster Model 100-Days 2-Weeks

SMAPE SMAPE t-test d SMAPE t-test d

Posting Behavior
Average Daily Number of Posts

C0 11.09 24.45 -0.05 -0.01 30.73 -4.31 *** -1.59
C1 4.42 14.85 1.52 0.21 17.82 -3.68 *** -1.35
C2 5.78 17.45 3.49 *** 0.49 19.77 3.93 *** 1.44
C3 4.20 18.00 5.76 *** 0.82 27.1 4.99 *** 1.84
C4 5.85 16.25 2.02 * 0.29 17.04 1.07 0.39

Average Daily Number of Words
C0 22.69 42.85 1.10 0.16 54.22 -0.97 -0.36
C1 11.24 24.99 -1.44 -0.2 19.46 -0.38 -0.14
C2 11.31 24.5 2.60 * 0.37 23.28 1.46 0.54
C3 6.40 17.86 3.03 *** 0.43 18.15 1.96 * 0.72
C4 13.65 25.37 -0.18 -0.03 34.4 -3.72 *** -1.37

Engagement Received
Average Daily Number of Comments Received

C0 39.29 51.71 1.16 0.16 56.14 -0.41 -0.15
C1 11.20 30.22 -0.35 -0.05 27.45 -0.41 -0.15
C2 18.61 33.23 0.26 0.04 32.51 2.57 * 0.94
C3 9.08 24.93 2.78 * 0.39 18.18 -0.18- -0.07
C4 25.63 31.38 0.46 0.07 26.55 -2.13 * -0.78

Average Daily Number of Likes Received
C0 25.59 41.90 1.64 0.23 52.27 1.10 0.40
C1 10.74 28.27 0.68 0.1 29.33 -0.97 -0.36
C2 17.66 31.37 3.01 *** 0.43 33.87 3.10 *** 1.14
C3 8.04 18.43 4.74 *** 0.67 17.45 0.72 0.26
C4 13.74 28.2 1.70 * 0.24 32.34 -1.28 -0.47

LIWC category, and then compare the differences in the psycholinguistic use pre- and post-

enrollment using independent sample t-tests.

7.4 RQ1: Findings on Observer Effect in Social Media Behavior

7.4.1 Deviation in Behavior

I calculate the deviation in the actual post-enrollment behavioral measures from predicted

measures using autoregressive moving average (ARIMA) models that account for trends

and seasonalities in time series. Table 7.5 summarizes the model metrics and observations

with respect to changes in participants’ social media behaviors.
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Changes in Posting Behavior

First, I note that the predictive models perform decently with models predicting the number

of posts and number of words show mean SMAPEs of 6.27% and 13.05% respectively.

However, the deviation in the post-enrollment data between predicted and actual values

is higher. Looking at 100-days post-enrollment data, Clusters C2 and C3 show statistically

significant deviations in both the measures of quantity and verbosity of posts, i.e., they

post significantly more frequently and longer than their expected behavior. Next, focusing

on the initial first two weeks post-enrollment, C2 and C3 show similar increase in posting.

Interestingly, C0 and C1 show lower frequency of posting in the first two weeks, however,

their posting behavior is closer to their expected posting behavior following the initial

two weeks period. C4 generally shows no significant change in behavior, except that these

individuals tend to express shorter than expected posts in the first two weeks. Figure 7.7

show cluster-wise deviations in actual and expected time series of number of posts.

Changes in Engagement Received

The models predicting engagement received, perform poorer than the above; models predict-

ing number of comments and likes show mean SMAPEs of 20.76 and 15.15 respectively.

Considering the 100-days of post-enrollment period, C3 received higher than expected likes

and comments and C2 received higher than expected comments. The received engagements

are also likely a correlate of these individuals’ higher posting behavior as noted above.

Looking at two-weeks’ deviations, the findings suggest that C2’s posts received immediate

higher quantity of comments and likes, and C4 received lower quantity of comments. Both

C0 and C1 did not receive any significant deviations in the engagements received. Figure 7.8

shows an example time series plots of how the number of likes received evolved per cluster.
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Figure 7.7: Evolution of the daily average number of posts per cluster in 100-days pre- and
post- enrollment period. The dotted line in the center of each plot represents the date of
enrollment (day 0).
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Figure 7.8: Evolution of the daily average number of likes per cluster in 100-days pre- and
post- enrollment period. The dotted line in the center of each plot represents the date of
enrollment (day 0).
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Placebo Tests

To rule out the notion that the observed effects are at chance and not specific around partici-

pants’ enrollment to the study, I conduct placebo tests. I repeat the time-series experiments

on several (150) randomly permuted “placebo” enrollment dates in the pre-enrollment data

of the participants. I measure the statistical significance as per t-test in the deviation in

actual and predicted time series data for each of the permuted date for each cluster. Out of

150 permutations, C0 and C4 show significance in 2 and 1 instances respectively, and the

other three clusters show no significant instances. Therefore, the probability of significant

instance is close to 0 for all the clusters, revealing that the significance observed around the

actual enrollment dates is not by chance.

7.4.2 Changes in Topical Themes

Table 7.6 summarizes the relative change in topical prevalence from pre- to post- enrollment

for the participant clusters. Cluster C0 shows an increase in several themes of topics across

travel, food, and news — all of which could be considered to be primarily more public

content. These individuals also show an increased sharing about family gatherings, but

decreased sharing about sports and celebratory events. Next, Cluster C1 shows increased

sharing about holiday plans, family gatherings, and celebratory events, but decreased sharing

about news-related content. Cluster C2 shows the least changes in expressiveness of content,

with only decrease in sharing about food and social events. Cluster C3 shows varied changes,

with increase in sharing about travel, food, and sports related content, whereas a decrease

in more personal content such as holiday plans, work-life balance, family, and celebratory

events. Finally, Cluster C4 shows an increase in sharing about food and family gatherings,

whereas a decrease in holiday plans, news, and interests-related content.
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Table 7.6: Changes in topical prevalence post-enrollment in the study. Statistical signifi-
cance is computed as per independent-sample t-tests (* p<0.05, ** p<0.01, *** p<0.001).
Significant values are shaded in blue for positive changes, i.e., higher average value in
post-enrollment, and red for negative changes, i.e., lower average value in post-enrollment
period.

Topic % Change in Cluster

C0 C1 C2 C3 C4

Travel & Locations 28.38 *** -0.98 -7.69 25.14 * -1.94
Food & Drinks 37.16 *** 2.28 -13.85 ** 3.39 * 14.20 **
Holiday Plans 18.22 * 18.65 * -7.22 -12.10 * -10.21 *
News & Information 33.89 ** -14.25 *** -6.19 -19.29 *** -17.36 *
Work-Life Balance -0.05 1.28 -8.93 -8.30 * 0.88
Family Gathering 56.72 *** 11.99 * -7.43 3.41 36.54 ***
Social & Sports -29.13 ** 12.21 -4.54 * 66.77 *** -14.62
Greetings & Celebrations -11.58 *** 23.62 *** -7.64 -28.64 *** 18.51
Friends & Family -1.37 -5.98 -10.48 -12.79 *** -9.33
Activities & Interests -0.38 6.10 -21.42 -16.39 -30.58 **

7.4.3 Changes in Psycholinguistic Use

Finally, I examine the psycholinguistic changes in the clusters of participants. Table 7.7

shows the changes in psycholinguistic use.

First, the individuals in Cluster C0 do not show any significant change in affective

expressions except in the case of anger. In cognitive expressions, they show an increase in

words related to certainty. In perception, feel and see decrease, whereas hear increases. They

also show a decrease in first person singular pronoun use but increase in first personal plural

pronoun use. Together, the pronoun use may indicate a decrease in self-attentional focus

and increase in collective identity based language [131]. We also find a decrease in several

function words, including adverbs, verbs, auxiliary verbs, quantifiers, and relatives. Among

personal and social concerns, these individuals show an increase in achievement, home, and

religion.

The individuals in Cluster C1 do not show any significant change in affective, cognitive,

and perceptive expressions. Among function words, they show a decrease in second person

pronouns, and an increase in conjunction and inclusive. They also show a significant increase

in social words, including the categories of family, friends, home, and religion. This also
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aligns with their topical changes in language post-enrollment. Therefore, these individuals

do not show significant changes in non-content words, but significantly change their use

of content words, i.e., we could assume that these individuals do not significantly change

“how” they write, but do significantly change “what” they write.

The individuals in Cluster C2 show a significant decrease in a majority of affective,

cognitive, and perceptive expressions, including anger, anxiety, negative affect, positive

affect, causation, certainty, cognitive mechanics, inhibition, percept, and see. They show a

decrease in the use of first person pronouns. In other function words, they show a decrease in

past and present tense, article, verbs, inclusive, preposition, and relative. Again, in personal

and social concerns, they show a decrease in friends, family, and home. Together, these

psycholinguistic changes indicate that these individuals inhibit sharing about personal and

self-expressive content, or prefer to share more about public-facing and less subjective

content. This could be a sign of self-regulation among these individuals.

As above, the individuals in C3 show a significant decrease in several affective, cognitive,

and perceptive attributes. They also decrease the use of first person singular pronouns, indi-

cating lowered self-attentional focus, however, the use of third person pronouns significantly

increase. Again, several function words decrease, including adverbs, verbs, and prepositions.

In contrast to C2, C3 not only shows decreased negative affect and swear words but also

increased positive affect and inclusive keywords. We also find an an increase in several

social words, including family, humans, and social. These could be a manifestation of them

wanting to self-present in a more socially desirable or positive way. Further, the decrease in

work keywords might suggest that they were aware to not share work-related events on social

media, particularly given the context that our study recruitment happened in workplace

context.

Finally, the individuals in C4 show an increase in multiple affective expressions, including

anger, negative affect, and swear, whereas a decrease in positive affect. Most cognitive and

perceptive categories do not change, except a significant decrease in negation and feel. These
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Table 7.7: Independent-sample t-tests in pre- and post- enrollment psycholinguistic (LIWC)
use per cluster (* p<0.05, ** p<0.01, *** p<0.001). Significant values are shaded in blue for
positive changes, i.e., higher average occurrence in post-enrollment, and red for negative
changes, i.e., lower average occurrence in post-enrollment period.

LIWC t-test

C0 C1 C2 C3 C4

Affect
Anger 2.01 . -1.07. -2.02 . -1.02. 4.00 ***
Anxiety 1.41. 0.03. -2.27 . -1.957. 1.93.

Neg. Affect 0.83. -0.93. -2.60 ** -2.834 ** 2.09 .

Pos. Affect 0.08. 1.18. -4.49 *** 1.30 * -2.06 .

Sadness 1.427. -0.42. 1.52. -1.46. -0.61.

Swear 1.134. 0.60. -0.12. -3.06 ** 7.53 ***
Cognition
Causation 0.234. 0.87. -2.69 ** -1.97 . 0.20.

Certainty 4.08 *** 1.91. -2.12 . -1.11. 0.28.

Cog. Mech. 1.32. 0.86. -3.80 *** -0.80. -0.93.

Inhibition -1.13. -1.37. -3.53 *** -0.02. 0.60.

Discrepancies -1.20. -1.61. 1.08. -0.05. -0.55.

Tentativeness 0.43. -1.17. 1.79. -1.83. 1.23.

Feel -2.31 . 0.87. -1.66. -3.12 ** -2.51 .

Hear 5.48 *** 0.50. 2.39 . 1.27. 1.41.

Insight -1.23. -0.141. -0.32. -2.39 . 0.90.

Percept -0.07. 0.35. -4.74 *** -1.23. -1.50.

See -2.31 . -0.80. -4.77 *** -1.41. -0.80.

Interpersonal Focus
1st P. Sing. -7.29 *** -1.00. -5.78 *** -2.35 . -4.17 ***
1st P. Plu. 2.25 * 0.47. -2.34 . 1.86. 1.31.

2nd P. -1.43. -3.32 *** 5.71 *** 1.16. -0.70.

3rd P. -0.12. -0.63. -0.26. 4.61 *** -0.03.

Indef. Pron. -3.29 ** -1.33. -1.30. -3.43 *** 0.92.

Fut. Tense 0.32. -0.65. 2.32 . -0.69. -0.36.

Past Tense 1.85. 0.28. -1.99 . -0.158. 2.61 **
Prs. Tense -5.54 *** 0.19. -3.15 ** -6.49 *** -1.90.

LIWC t-test

C0 C1 C2 C3 C4

Lexical Density and Awareness
Adverb -3.00 ** -0.44. 0.61. -3.36 *** -2.46 .

Article 0.10. 1.94. -3.60 *** 0.27. -1.34.

Verb -4.78 *** 0.47. -2.77 ** -5.53 *** -1.36.

Aux. Verb -4.61 *** 0.40. 0.10. -7.00 *** -1.30.

Conjun. 1.82. 2.43 . 3.01 ** 0.88. -0.15.

Exclusive 1.05. -1.56. 0.80. -1.92. -0.33.

Inclusive 2.17 . 2.99 ** -3.47 *** 3.32 *** -1.53.

Negation -1.38. -1.09. -0.90. -4.73 *** -2.68 **
Preposition 1.47. -1.01. -3.27 ** -3.11 ** -2.28 .

Quantifier -2.34 . 0.96. 0.71. -0.06. 0.50.

Relative -2.20 . -1.16. -3.65 *** -1.57. -2.98 **
Personal and Social Concerns
Achvmt. 3.28 ** -0.91. -2.61** 0.14. -1.08.

Bio 1.57 2.57 . 0.09. -0.20. -2.77 **
Body -1.72. 0.74. 1.03. -1.34. -1.73.

Death 0.43 1.99 . -0.931. -0.162. -0.45.

Family 1.14 2.64 ** -2.06 . 3.66 *** 0.29.

Friends -2.08 0.35 * -1.46 * -2.01. -1.17.

Health 0.52 0.47 -0.34. -0.11. -0.81.

Home 3.14 ** 2.77 ** -2.19 . 1.39. 0.08.

Humans -2.94 ** -1.67. 0.51. 2.85 ** -0.62.

Money -1.81. -1.06. -1.05. 1.01. -1.24.

Religion 2.29 . 2.48 . -1.06. -0.87. -0.14.

Sexual 1.62 -0.27. 1.07. -0.62. 0.56.

Social -1.02 -0.63. -1.542. 2.79 ** 0.30.

Work 0.29 -0.58 -4.57 *** -2.96 ** -1.74.

individuals also show a decreased use of first person singular pronouns, but an increase

in past tense. Most other function words and social words do not show significant change,

except significant reduction in the use of adverbs, preposition, relative, and bio.

7.5 RQ2: Explaining Observer Effect Based on Individual Differences

This section targets the second research question to explain observer effect on social media

behavior, through theories relating to individual differences and psychological traits. For

each cluster, I examine the offline (psychological) characteristics, and evaluate the behavioral

and linguistic changes as observed in the social media behavior. I contextualize and interpret
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the findings by drawing upon the literature in human behavior, psychology, and social

science (as discussed in section 7.1). Table 7.8 summarizes the observations from this study.

Cluster C0 contains individuals with high levels of conscientiousness and sleep quality,

and low levels of openness and cognitive ability, suggesting that these individuals are more

likely to be routine-oriented and pragmatic. Prior literature notes that high conscientiousness

is associated with self-monitoring [571]. This could be associated with the changes in

their posting behavior: they tend to significantly reduce their posting immediately after

enrollment, which however, gets back closer to their normalcy over time. This aligns with

behavioral amendments as a form of habituation explained in behavioral science [117].

Linguistically, these individuals show an increased sharing about public-facing information,

and when coupled with the observation of decreased first person singular pronouns, can be

considered to be reduced self-attentional focus, and increased sharing about events attended

as a part of group.

Cluster C1 contains individuals with high cognitive ability and low neuroticism, suggest-

ing that they are likely to be reasonable and composed in day-to-day and general aspects

of life [42]. While their posting was significantly decreased in the first two weeks, posting

behavior became closer to the normal subsequently. These individuals show an increase in

sociality after enrollment [204]. One possible explanation of their behavior could be based

upon Middleton, Buboltz, and Sopon’s observation that individuals with higher cognitive

ability are less likely to show psychological reactance [416]. Likewise, observations on C1

also aligns with prior work where the increased use of family-related keywords are known

to be associated with lower self-monitoring skills [290]. Together, these individuals might

have lower self-monitoring skills, be less bothered by the aspect of being “observed”, and

be comfortable to continue sharing their social and personal life on social media.

Cluster C2 consists of individuals with high levels of neuroticism, cognitive ability,

negative affect, and anxiety, and low levels of extraversion, agreeableness, conscientiousness,

positive affect, and sleep quality. These characteristics suggest that these individuals are
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likely to be more withdrawn and more prone to stress and irritability [42]. These individuals

show decreased sharing about social topics such as food and drinks, and sports and social

events. This is also reflected in their psycholinguistic use of lowered personal and social

words such as family, friends, and home. However, these individuals increased their posting

activity post-enrollment. Their higher volume of post-enrollment posting behavior could be

associated with higher self-monitoring skills as per prior work [287]. These individuals also

received greater engagement in terms of likes and comments — this could be a function

of heightened information seeking on social media, which is known to be associated with

higher neuroticism [569], as also in the case of C2.

Cluster C3 consists of individuals with high extraversion, agreeableness, and conscien-

tiousness. Extraversion is known to positively correlate with public self-consciousness [596]

and self-monitoring [43]. Similar to C2, greater posting behavior in C3 could be a manifesta-

tion of high self-monitoring skills [287]. Further, high conscientiousness could also dictate

a desire to appear as “good” participants or self-present in a more desirable way [42] — this

could be reflected in their increased social media activities, increased positive affect, and

decreased negative affect and swear words. Then, high agreeableness is known to be associ-

ated with people’s likelihood to seek acceptance and maintaining social connections [569].

Similar phenomenon is observable in our findings as these individuals posts elicited greater

number of likes and comments, compared to before enrolling in the study. Further, prior

work situated theory of planned behavior in explaining greater intention to post online for

individuals with high agreeableness and extraversion [480].

Cluster C4 consists of individuals with high openness. Although their posting does not

significantly change immediately, they show a significant increase in their posting behavior

throughout the post-enrollment period, compared to expected behavior. They also show

significant linguistic changes in this period. In particular, they show increased sharing

about many personal and social aspects of life, despite a significant reduction in first person

singular pronouns and many function words. At a meta-level, these individuals show lowered
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Table 7.8: Summary of Findings.

Cl. Traits Behavior Topics Psycholinguistics Notes / Descriptor

C0 High (Consci-
entiousness,
Sleep Quality),
Low (Openness,
Cognitive Ability)

Posting signifi-
cantly reduces
in the initial few
days, then back
to normalcy (Fig-
ure 7.7a)

Increased sharing
about public-
facing information
(Table 7.6)

Increased (anger,
achievement,
home, religion),
Decreased (feel,
first person singu-
lar, present tense,
function words,
friends, humans)
(Table 7.7)

High conscientiousness is asso-
ciated with self-monitoring. Ha-
bituation in posting behavior.
Decreased self-attentional fo-
cus.

C1 High (Cognitive
Ability), Low
(Neuroticism)

Posting signifi-
cantly decreased
in the first two
weeks, then back
towards normalcy
(Figure 7.7b)

Increased sharing
about family gath-
ering, social, and
online greeting re-
lated activities (Ta-
ble 7.6)

Increased (so-
cial words), De-
creased (2nd
person) (Ta-
ble 7.7)

These participants are trait-
wise more reasonable and com-
posed. They show high social-
ity post-enrollment. Low psycho-
logical reactance and low self-
monitoring skills; less bothered
about being “observed”.

C2 Low (Extraversion,
Agreeableness,
Conscientious-
ness, PA, Sleep
Quality), High
(Neuroticism, Cog-
nitive Ability, NA,
Anxiety)

Posting signifi-
cantly increased
throughout.
Greater engage-
ment received.
(Figure 7.7c)

Decreased shar-
ing about food
and social topics
(Table 7.6)

Increased (hear,
future tense), De-
creased (affective,
cognitive, percep-
tive, 1st person
pronouns, func-
tion words, social
words) (Table 7.7)

Trait-wise, they may be more
withdrawn, and prone to
stress and irritability. High
self-monitoring skills, and
heightened information seeking
(associated with high neuroti-
cism).

C3 High (Extraver-
sion, Agreeable-
ness, Conscien-
tiousness, PA,
Sleep Quality),
Low (Neuroticism,
NA, Anxiety)

Posting signifi-
cantly increases
throughout.
Greater engage-
ment received.
(Figure 7.7d)

Decreased shar-
ing about personal
events (Table 7.6)

Increased (social
words, third per-
son pronouns),
Decreased (af-
fective, cognitive,
perceptive, first
person pronouns,
function words)
(Table 7.7)

Desire to self-present in a more
desirable way. Likelihood to
seek acceptance and maintain
social connections.

C4 High Openness No immediate
significant differ-
ence in posting
frequency, but
posting signifi-
cantly increases
throughout. More
likes received.
(Figure 7.7e)

Decreased shar-
ing about news
and holiday plans.
Increased sharing
about food/family
gathering (Ta-
ble 7.6)

Increased (anger,
NA, swear, past
tense), Decreased
(PA, negation, feel,
1st person sin-
gular, function
words) (Table 7.7)

Self-regulation. Less personal-
content. High psychological
reactance, manifested in de-
tached sharing about personal
content.

use of negations and exclusives, suggesting lowered cognitive complexity in language —

which could be associated with less personal content [475]. These changes may suggest that

these individuals are likely to self-regulate their social media behaviors to present selective

aspects of life without sharing too intimate content. Again, greater openness is known

to be associated with high psychological reactance [568], which could be manifested in

detached sharing about personal and first person singular content. Prior work has associated

openness with greater resiliency and externally induced behavioral changes [420], however,

the interplay of such a characteristic with observer effect remains to be examined further.
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7.6 Discussion

7.6.1 Theoretical Implications

Correcting biases in prospective use of social media as a wellbeing sensor

This study provides insights regarding the prevalence and degree of observer effect in the

social media behavior. In particular, I examined how people deviated from their normative

(or expected) behaviors after enrolling in a multimodal sensing study. This study informs

research about how to correct for data, biases, and models when implementing practical and

prospective data-driven assessments and interventions. In this regard, this study contributes

to the recommendations made by Ruths and Pfeffer in correcting biases of big-data tech-

nologies [525]. The study findings help us to gauge what to expect when social media is

used as passive sensor in prospective setting. This would help us be more cognizant about

which individuals might significantly deviate from their otherwise normative behaviors,

and accordingly build personalized models that are robust to people’s baseline traits and

tendencies to be impacted by observer effect.

Generating hypotheses

The findings of this study can help to generate hypotheses relating to observer effect in social

media and multimodal sensing. These hypotheses can be tested and evaluated individually

and rigorously. RQ2 explained the findings through theories in psychology and social science

literature. These associations can be formulated as testable hypotheses in future research.

This study also motivates to incorporate other intrinsic and social processes such as self-

censorship and privacy perceptions, which may also interact with social media behavioral

change [151, 403]. It is also important to note how the findings are also an artifact of the

domain and the participant pool. This study is conducted on a specific participant pool

of information workers in the context of workplace settings. Such a factor may have an

effect on the changes observed in work-related language (in Table 7.6 and Table 7.7). Future
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experiments can explore more conclusive and generalizable evidences about observer effect,

and whether these are opportunities or challenges in other situations and contexts.

Complementary Assessments of Observer Effect

As already noted before, observer effect has not only been hard to study, but also there is no

established gold-standard of measuring observer effect. In this regard, this is the first study

of measuring observer effect on social media behavior. Due to the lack of direct means to

measure success and construct validity of this research, I tested and situated the findings

with existing theories. While this study approached targeted to draw passive and more

objective form of assessment, it is also important to account for self-reported assessments

and perceptions about observer effect. Therefore, this work motivates to design and conduct

surveys and interviews, which would help us gauge complementary information about how

observer effect manifests in social media behavior.

Self-selection and “Who is the observer?”

In this particular scenario, observers were a set of researchers to whom the participants

willingly shared their data, and there was a data sharing protocol in place. Again, the

participants self-selected themselves in the study in return of a participation compensation.

However, observer effect can manifest in many other cases in different combinations of other

kinds of observers or data sharing terms. Therefore, understanding the role of these factors

with respect to observer effect would be important to measure and correct for observer effect

as needed in real-world situations.

7.6.2 Implications for Researchers and Practitioners

This research showed that individuals are likely to deviate from their expected behavior when

subjected to real-time and prospective data collection settings — attributed as some form of

“observer effect”. Such an effect needs to be accounted for to successfully instrument real-

273



time applications of human-centered social media based assessments. The computational

approaches adopted in this study can be used to measure observer effect in various contexts.

Researchers can use such approaches to identify cases of observer effect-based deviations,

and build predictive models robust to such effects in a person-centric fashion. In addition,

this study reflects that self-reported psychological traits can not only be used to stratify

and cluster individuals, but also to explain their behavioral changes due to observer effect.

Similar approaches can be used to build person-centered modeling and interventions for

different groups of individuals.

Besides highlighting the potential assessment-centric biases, this study also motivates us

to critically reflect and rethink the implications surrounding the individuals’ autonomy in us-

ing technologies. Individuals primarily use social media platforms to share and connect with

others. However, if external interventions potentially interfere with their social media use or

make them feel uncomfortable or surveilled, then the fundamental goals and expectations of

using social media platforms are interfered. Such an unintended consequence needs to be

evaluated by researchers and practitioners while building digital data-driven assessments.

Therfore, this work encourages us to critique the trade-offs of the harms and benefits of

using social media based technologies for wellbeing and behavior assessments.
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CHAPTER 8

CONCLUSION

I began this dissertation with an aim to evaluate and showcase social media as a viable passive

sensor of wellbeing, particularly in situated communities — particularly, two communities

with which we are likely to closely relate ourselves with, college campuses and workplaces.

This dissertation showed multiple studies towards this goal. In conclusion, I note some

of the major unique aspects of the work presented in this dissertation. First, this work is

motivated by the social-ecological model [102] that human behaviors and wellbeing are

embedded in the complex interplay of the individual, community, and society. To get a better

understanding of wellbeing, we need to incorporate the situated context, and this dissertation

focuses on situated communities as examples to consider situated contexts. Next, given

that the targeted problems are in a real-world context, it is important to account for the

confounds and latent factors that may impact an individual’s wellbeing. While randomized

experiments would have been ideal, such settings are often infeasible and unethical in

several practical problem scenarios. In this regard, I developed computational and causal

frameworks that minimize the confounding factors, drawing upon machine learning, natural

language analysis, and statistical modeling techniques. The theory-driven computational

methodologies proposed in this dissertation can be adapted in several related settings and to

help build tailored and timely supportive interventions. Further, this dissertation proposed

methodologies to combine social media with multimodal sensing, leveraging complementary

strengths of multiple sensing modalities towards a comprehensive understanding of human

behavior and wellbeing. Together, this dissertation propels the vision towards leveraging

multimodal sensing to build human-centered technologies for wellbeing.

I recognize that the proposed approaches bear real-world implications, and it is important

to introspect and interpret these online-data-driven offline inferences — this forms a cross-
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cutting theme in this dissertation. These studies bear implications to help inform and develop

real-world supportive interventions. For example, stakeholders at college campuses or

workplaces can build real-time dashboards and assessment techniques to proactively help

the community members. However, a question that remains largely unexplored, is how

would these systems perform in the real-world? That is, the in-practice utility and ecological

validity of these systems remain largely unknown. Relatedly, this dissertation targeted the

problem of “observer effect”. I studied observer effect in social media behavior in the context

of a multimodal sensing study. I provided a methodology to measure observer effect, and

found insights about the prevalence and degree of observer effect, and how it varies with

individual characteristics. This dissertation motivates future research in evaluating such

questions on the in-practice utility of social media and multimodal sensing.

I illustrate some open questions in the problems discussed in this dissertation, and

more generally in this problem space. These questions open up future directions to think,

evaluate, and address. For example, there is a lack in understanding of ground-truth? What

does it mean to be ground-truth and how do we collect that? Again, these assessments

are not immune to biases, for example, social media data suffers from self-selection and

self-censorship biases. Therefore, how do we minimize and address these biases going

forward? How do we ensure that these methods also benefit beyond those who afford or

use these technologies? Again, these assessments can be misused, and findings can be

misinterpreted to reinforce existing societal biases. While it is important to build transparent

and interpretable models without compromising with performance, we also need to ensure

that the algorithms are not misused for unintended and unethical consequences. That is, we

need to navigate through the harms and benefits of these algorithms and tools, and build

rigorous but responsible and ethical technologies. These questions pose both challenges as

well as opportunities to strive towards building better future technologies for wellbeing. It

is also important to critically study these questions and bring together multi-stakeholder

viewpoints to realize the research and practical impact. I envision these topics to encourage
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further discussions among researchers, ethicists, and technology users.

I end the dissertation with a few future directions to pursue in the area of research with

respect to social media, wellbeing, and human-centered machine learning.

Developing Human-centered Approaches with Technology Tailored to a Person’s Sit-

uations, Demands, and Needs. The popular phrase “one size does not fit all” applies in

several scenarios, including computational techniques to assess individual and collective at-

tributes. As also noted in this dissertation, all individuals are not the same and have different

experiences, the between-person variability in data may impact predictions of an individual’s

underlying psychology, routines, and other personal attributes. Further, generalized mod-

els can be exclusionary, and be reinforcing stereotypes and existing societal biases. Such

approaches may suffer from the limitations of oversimplifying the social reality, and may

misrepresent or suppress the voices of the underrepresented and historically marginalized

groups. Therefore, it is only imperative that we build algorithms catering to each individual’s

constraints and factors. For instance, incorporating additional offline context that captures

factors explaining posting (or not posting) behavior on social media can boost the ability of

social media to predict individual outcomes. By accounting for people’s voices (as naturalis-

tically expressed on social media), we can build technologies that incorporate individual

autonomy and more individual-facing approaches by stakeholders. Such work will help

build tools that quantify and capture wellbeing constructs on a continuous and real-time

basis and can help identify the (often) unknown concerns of wellbeing.

Facilitating Online Technology Supported Remote Functioning and Wellbeing Fu-

ture research can build upon this dissertation to contribute towards the theme of “Future

of Work”. In light of the ongoing COVID-19 pandemic, we can build social media and

ubiquitous technologies that facilitate remote worker functioning [153, 541]. The pandemic

has reinforced the importance of and dependence on computing technologies in our lives.

Going forward, we can build technologies that leverage the advantages of virtual interactions,
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and mitigate the challenges due to the lack of physical and face-to-face interactions. This

dissertation revealed how self-initiated online data such as individuals’ self-presentation

on LinkedIn to assess their role ambiguity [536], and company reviews on Glassdoor to

assess the company culture [155], and similar approaches can be used to solve problems

associated with the challenges of work and technology-assisted work with the changing

scenarios. For instance, remote work settings can lead to overlapping boundaries of personal

and professional lives and cause additional stress. Again, new disadvantages and disparities

may have begun, e.g., defining workplace culture would now need to account for remote

collaboration and remote dynamics. Further, online settings may bring in the complexities

of online antisocial behaviors, such as harassment and discrimination.

Evaluating Prospective Utility and Designing Online Social Platforms for Wellbeing

Support. This dissertation stressed how a significant body of research in this area relies

on data that is retrospectively collected, and if we envision a future with social media

technologies for wellbeing interventions, we need to ask about the efficacy of these algo-

rithms perform in prospective data collection and assessments. This dissertation motivates

us to build approaches that correct for biases in the in-practice utilization of social media

data-driven assessments. Such evaluations would also provide insights to drive designing

and building online wellbeing interventions for different populations. For instance, we found

the efficacy of counseling interventions via social media on college students [544]. Future

research can build upon the implications of such studies to design systems that facilitate

peer mental health support among different communities. This body of work needs to be

expanded through experimental studies of how certain interventions help (or do not help)

individuals. We need to recognize the sensitivity of this work, and to negotiate the challenges,

research should be conducted in close collaboration with mental health support volunteers,

psychologists and clinicians, platform owners, and users.
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Understanding Harms/Benefits of Computational and Data-Driven Assessments So-

cial media and ubiquitous technologies serve a lot of opportunities and advantages in

assessing many psychological, cognitive, and social outcomes. However, these come at a

cost. Often, collecting and analyzing such data and using data-driven insights for real-world

decisions can mean compromising with privacy and ethics. There are lingering questions

about the circumstances under which such inferences should be made, and, what should be

the best practices. Despite the best of intentions, these methodologies can lead to expectation

mismatches, and individuals may perceive intrusiveness and dissatisfaction about such algo-

rithmic inferences on data without their consent or awareness [213]. There are bad actors

in the online and offline world, and they can potentially use these inferences in ethically

questionable ways, leading to compromised privacy, defying expectations, and damaging

trust between individuals and technology. We need to build approaches that balance the

trade-offs of the risks and benefits. This direction of work can revisit and recommend

guidelines towards transparency and accountability, and bear multi-stakeholder implications

in human-centered computing research of wellbeing.
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APPENDIX A

MODELING ORGANIZATIONAL CULTURE

A.1 Detailed codebook

Table A.1: Summary of job aspects, descriptions, and corresponding measure in organiza-
tional culture.

Aspect Validation Source

Social Skills

Instructing: Teaching others how to do something Human-Relations Model

[495]

Service Orientation: Actively looking for ways to help people Affiliative Norms [135]

Interests

Social: Working with, communicating with, & teaching people. These occupations often

involve helping or providing service to others.

Need for Security:

Value [304]

Enterprising: Starting and carrying out projects. These occupations can involve leadership

and decision making. Sometimes require risk taking and often deal with business.

Self-Actualizing

Norms [135]

Conventional: Following set procedures & routines. These occupations include working

with data & details instead of ideas. They offer a clear line of authority to follow.

Conventional Norms [135]

Work Values

Achievement: Result oriented, allows strongest abilities to give a feeling of accomplishment.

Corresponding needs: Ability Utilization and Achievement.

Process-Oriented vs

Results-Oriented (Prac-

tice) [304]

Independence: Allow employees to work on their own and make decisions. Corresponding

needs: Creativity, Responsibility and Autonomy.

Dependent Norms [135]

Recognition: Offer advancement, leadership potential, & often considered prestigious. Cor-

responding needs: Advancement, Authority, Recognition and Social Status.

Need for Security

(Value) [304]

Relationships: Allow employees to help others & work with co-workers in a friendly envi-

ronment. Corresponding needs: Co-workers, Moral Values & Social Service.

Affiliative Norms [135]

Support: Offer supportive management that stands behind employees. Corresponding

needs are Company Policies, and Human Relations and Technical Supervision

Supervision [240]

Working Conditions: Offer job security & good working conditions. Corresponding needs:

Activity, Compensation, Independence, Security, Variety, Working Conditions.

Need for Security

(Value) [304]

Work Styles

Achievement/Effort: Establishing and maintaining personally challenging achievement

goals and exerting effort toward mastering tasks.,

Achievment Norms [135]
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Adaptability/Flexibility: Being open to change (positive or negative) and to considerable

variety in the workplace.,

Open-Systems Model [495]

Concern for Others: Being sensitive to others’ needs and feelings and being understanding

and helpful on the job.,

Humanistic-Encouraging

Norms [135]

Cooperation: Being pleasant with others on the job and displaying a good-natured, cooper-

ative attitude.

Parochial vs Professional

(Practice) [304]

Independence: Developing one’s own ways of doing things, guiding oneself with little or no

supervision, and depending on oneself to get things done.,

Self-Actualizing

Norms [135]

Initiative: Willingness to take on responsibilities and challenges., Work Centrality

(Value) [304]

Integrity: Honest and ethical conduct Normative vs Pragmatic

(Practice) [304]

Leadership: Willingness to lead, take charge, and offer opinions and direction Involvement [240]

Self Control: Maintaining composure, keeping emotions in check, controlling anger, and

avoiding aggressive behavior, even in very difficult situations.,

Process-Oriented vs

Results-Oriented (Prac-

tice) [304]

Social Orientation: Preferring to work with others rather than alone, and being personally

connected with others on the job.,

Humanistic-Encouraging

Norms [135]

Stress Tolerance: Accepting criticism and dealing calmly and effectively with high stress

situations.

Need for Security

(Value)[304]

Work Activities: Interacting with Others

Assisting and Caring for Others: Providing personal assistance, medical attention, emo-

tional support, or other personal care to others (coworkers, customers, patients)

Affiliative Norms [135]

Coaching and Developing Others: Identifying developmental needs of others and coach-

ing, mentoring, or otherwise helping others to improve their knowledge or skills

Humanistic-Encouraging

Norms [135]

Developing and Building Teams: Encouraging and building mutual trust, respect, and

cooperation among team members.,

Humanistic-Encouraging

Norms [135]

Establishing & Maintaining Interpersonal Relationships: Developing constructive & co-

operative working relationships with others, & maintaining them

Affiliative Norms [135]

Guiding, Directing, and Motivating Subordinates: Providing guidance & direction to sub-

ordinates, like setting performance standards & monitoring performance

Power Norms [135]

Monitoring and Controlling Resources: Monitoring and controlling resources and over-

seeing the spending of money

Loose-Control vs Tight-

Control (Practice) [304]

Resolving Conflicts and Negotiating with Others: Handling complaints, settling disputes,

and resolving grievances and conflicts, or otherwise negotiating with others

Need for Authority (Value)

[304]

Training and Teaching Others: Identifying the educational needs of others, developing

formal educational or training programs or classes, and teaching others

Human-Relations

Model [495]

Work Context: Structural Job Characteristics

Consequence of Error: Serious would the result usually be if the worker made a mistake

that was not readily correctable,

Perfectionist Norms [135]
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Freedom to Make Decisions: Much decision making freedom, without supervision, does

the job offer,

Dependent Norms [135]

Frequency of Decision Making: Frequently is the worker required to make decisions that

affect other people, the financial resources, and/or the image and reputation of the organi-

zation,

Employee-Oriented vs Job-

Oriented (Practice) [304]

Importance of Being Exact or Accurate: Is being very exact or highly accurate in perform-

ing this job,

Perfectionist Norms [135]

Level of Competition: To what extent does this job require the worker to compete or to be

aware of competitive pressures,

Competitive Norms [135]

Structured versus Unstructured Work: To what extent is this job structured for the worker,

rather than allowing the worker to determine tasks, priorities, and goals,

Need for Security (Value)

[304]

Work Schedules: Regular are the work schedules for this job Loose-Control vs Tight-

Control (Practice) [304]

Work Context: Interpersonal relationships

Face-to-Face Discussions: Face-to-face discussions with individuals or teams, Meetings [240]

Frequency of Conflict Situations: Conflict situations the employee has to face, Need for Authority (Value)

[304]

Responsibility for Outcomes and Results: responsible for work outcomes and results of

other workers,

Avoidance Norms [135]

Work With Work Group or Team: Work with others in a group or team Teamwork-Conflict [240]
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APPENDIX B

PERSON-CENTERED CONTEXTUALIZATIONS

B.1 Detailed models

Table B.1: Generalized Models: Predicting psychological constructs with social media using
the entire data of all participants. Prediction algorithms used include Ridge, Elastic Net
(ElNet), Support Vector Regressor (SVR), XGBoost (XGB), Gradient Boosted Random
Forest (GBR), and Multilayer Perceptron Regressor (MLP). Reported accuracy numbers are
Symmetric Mean Absolute Percentage Error (SMAPE) and Pearson’s correlation coefficient
(r), which are pooled in k-fold cross-validation (k=5). The bold-faced number in each row
indicate the best performing model for that construct.

Construct Algorithm

Ridge ElNet SVR XGB GBR MLP
r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE

Cognitive Ability
Shipley (Abstraction) 0.25 6.81 -0.19 6.78 0.22 6.75 0.18 6.85 0.23 6.78 0.09 17.75
Shipley (Vocabulary) 0.29 4.13 -0.14 4.33 0.24 4.14 0.18 4.28 0.22 4.24 0.14 10.04
Personality Traits
Openness 0.25 6.89 -0.13 6.65 0.1 6.60 0.15 6.68 0.15 6.71 0.12 13.04
Conscientiousness 0.13 7.29 -0.14 7.07 0.08 7.02 0.04 7.34 0.06 7.28 0.04 11.35
Extraversion 0.13 8.93 -0.14 8.69 -0.06 8.69 0.17 8.61 0.17 8.54 0.14 12.54
Agreeableness 0.17 5.84 -0.15 5.78 -0.04 5.76 0.18 5.89 0.16 6.09 0.12 11.9
Neuroticism 0.12 13.56 -0.17 13.17 -0.14 13.11 0.05 13.59 0.06 13.37 0.09 13.87
Affect and Wellbeing
Pos. Affect 0.07 7.27 -0.07 6.88 0.11 6.83 0.13 7.10 0.13 6.92 0.07 12.81
Neg. Affect 0.11 10.90 -0.17 10.89 -0.11 10.89 -0.05 11.51 -0.04 11.66 -0.0 20.08
Anxiety (STAI) 0.12 9.66 -0.14 9.66 -0.1 9.54 -0.06 10.2 -0.02 9.97 0.07 14.85
Sleep Quality (PSQI) 0.15 16.02 -0.14 15.52 -0.12 15.15 0.17 15.17 0.16 15.28 0.08 23.01

284



Table B.2: Contextualized Models: Predicting psychological constructs with social media
separately for each behaviorally contextualized clusters. Prediction algorithms used include
Ridge, Elastic Net (ElNet), Support Vector Regressor (SVR), XGBoost (XGB), Gradient
Boosted Random Forest (GBR), and Multilayer Perceptron Regressor (MLP). Reported
accuracy numbers are Symmetric Mean Absolute Percentage Error (SMAPE) and Pearson’s
correlation coefficient (r), which are pooled in k-fold cross-validation (k=5). The bold-faced
number in each row indicate the best performing model for that construct.

Construct Algorithm

Ridge ElNet SVR XGB GBR MLP
r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE

Cognitive Ability
Shipley (Abstraction) 0.23 6.88 -0.17 6.82 -0.09 6.8 0.22 6.77 0.19 6.84 0.09 19.56
Shipley (Vocabulary) 0.21 4.25 0.03 4.33 0.03 4.16 0.21 4.25 0.28 4.11 0.13 15.82
Personality Traits
Openness 0.29 6.08 0.01 6.66 0.07 6.6 0.15 6.75 0.13 6.81 0.08 22.3
Conscientiousness 0.16 7.08 -0.1 7.1 -0.0 7.04 0.06 7.25 0.08 7.24 -0.02 22.64
Extraversion 0.21 8.46 -0.07 8.72 -0.06 8.71 0.16 8.66 0.16 8.62 0.1 22.66
Agreeableness 0.19 5.89 -0.14 5.8 -0.06 5.78 0.1 6.14 0.13 6.0 0.02 21.74
Neuroticism 0.14 13.22 -0.15 13.22 -0.1 13.19 0.12 13.37 0.18 13.09 0.01 20.72
Affect and Wellbeing
Pos. Affect 0.14 6.90 -0.01 6.88 0.04 6.82 0.07 7.31 0.04 7.35 0.06 15.25
Neg. Affect 0.13 10.89 0.01 10.87 0.0 10.8 0.03 11.26 0.01 11.36 0.01 22.23
Anxiety (STAI) 0.21 8.51 -0.04 9.68 -0.13 9.55 0.01 10.11 0.06 9.81 0.07 16.81
Sleep Quality (PSQI) 0.21 10.06 -0.05 15.49 -0.01 15.12 0.20 11.43 0.25 10.59 0.07 27.12

Table B.3: Generalized Models with PCA: Predicting psychological constructs with social
media using the entire data of all participants, after applying PCA-transformed features. Pre-
diction algorithms used include Ridge, Elastic Net (ElNet), Support Vector Regressor (SVR),
XGBoost (XGB), Gradient Boosted Random Forest (GBR), and Multilayer Perceptron
Regressor (MLP). Reported accuracy numbers are Symmetric Mean Absolute Percentage
Error (SMAPE) and Pearson’s correlation coefficient (r), which are pooled in k-fold cross-
validation (k=5). The bold-faced number in each row indicate the best performing model for
that construct.

Construct Algorithm

Ridge ElNet SVR XGB GBR MLP
r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE

Cognitive Ability
Shipley (Abstraction) 0.10 11.95 -0.19 6.78 0.22 6.68 0.21 6.86 0.2 6.95 -0.06 22.44
Shipley (Vocabulary) 0.11 7.57 -0.09 4.32 0.23 4.10 0.22 4.4 0.22 4.42 0.12 29.34
Personality Traits
Openness 0.12 10.89 -0.13 6.65 0.23 6.40 0.16 6.68 0.16 6.64 0.14 15.87
Conscientiousness 0.03 11.25 -0.14 7.07 0.13 6.97 0.12 7.13 0.11 7.19 0.08 16.22
Extraversion 0.11 13.43 -0.14 8.69 0.20 8.47 0.17 8.73 0.19 8.66 0.1 16.25
Agreeableness 0.11 10.1 -0.15 5.78 0.20 5.66 0.11 6.01 0.12 5.98 0.11 14.02
Neuroticism 0.02 22.47 -0.17 13.17 -0.02 13.29 0.07 13.54 0.05 13.48 0.09 21.8
Affect and Wellbeing
Pos. Affect 0.05 11.38 -0.07 6.88 0.13 6.79 0.09 7.15 0.03 7.24 0.03 29.89
Neg. Affect 0.07 17.54 -0.17 10.89 -0.07 10.82 0.10 11.29 0.10 11.38 0.12 22.91
Anxiety (STAI) 0.07 15.41 -0.12 9.66 -0.0 9.51 0.05 9.93 0.0 10.06 0.10 30.92
Sleep Quality (PSQI) 0.04 26.74 -0.14 15.52 0.10 15.04 0.09 15.94 0.12 15.68 0.12 24.60
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Table B.4: Contextualized Models with PCA: Predicting psychological constructs with
social media separately for each behaviorally contextualized clusters, after applying PCA-
transformed features. Prediction algorithms used include Ridge, Elastic Net (ElNet), Support
Vector Regressor (SVR), XGBoost (XGB), Gradient Boosted Random Forest (GBR), and
Multilayer Perceptron Regressor (MLP). Reported accuracy numbers are Symmetric Mean
Absolute Percentage Error (SMAPE) and Pearson’s correlation coefficient (r), which are
pooled in k-fold cross-validation (k=5). The bold-faced number in each row indicate the
best performing model for that construct.

Construct Algorithm

Ridge ElNet SVR XGB GBR MLP
r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE

Cognitive Ability
Shipley (Abstraction) 0.10 12.78 -0.05 6.91 0.14 6.75 0.21 6.97 0.16 7.11 -0.08 40.14
Shipley (Vocabulary) 0.03 8.74 0.09 4.31 0.14 4.14 0.17 4.49 0.21 4.46 0.06 51.14
Personality Traits
Openness 0.14 12.16 -0.0 6.68 0.24 6.45 0.09 7.02 0.16 6.96 0.05 26.83
Conscientiousness 0.08 12.34 -0.06 7.10 0.14 6.94 0.05 7.53 0.03 7.6 0.06 27.91
Extraversion 0.06 14.02 0.02 8.69 0.16 8.63 0.21 8.69 0.24 8.54 0.11 26.64
Agreeableness 0.08 10.79 -0.15 5.8 0.13 5.75 0.05 6.23 0.06 6.24 0.09 27.29
Neuroticism 0.04 23.19 -0.12 13.31 0.05 13.17 0.04 13.66 0.04 13.73 0.14 18.31
Affect and Wellbeing
Pos. Affect 0.08 11.95 0.06 6.88 0.08 6.81 0.14 7.22 0.16 7.20 0.01 49.12
Neg. Affect 0.09 20.94 -0.05 11.05 0.01 10.81 0.09 11.35 -0.0 11.69 0.02 38.29
Anxiety (STAI) 0.06 16.05 -0.0 9.77 -0.01 9.5 0.10 9.88 0.15 9.68 0.09 52.22
Sleep Quality (PSQI) 0.05 28.73 0.05 15.53 0.18 11.00 0.05 16.23 0.05 16.33 0.06 34.74

Table B.5: Physical Sensor based Models: Predicting psychological constructs with only
physical sensor based features. Prediction algorithms used include Ridge, Elastic Net
(ElNet), Support Vector Regressor (SVR), XGBoost (XGB), Gradient Boosted Random
Forest (GBR), and Multilayer Perceptron Regressor (MLP). Reported accuracy numbers are
Symmetric Mean Absolute Percentage Error (SMAPE) and Pearson’s correlation coefficient
(r), which are pooled in k-fold cross-validation (k=5). The bold-faced number in each row
indicate the best performing model for that construct.

Construct Algorithm

Ridge ElNet SVR XGB GBR MLP
r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE

Cognitive Ability
Shipley (Abstraction) 0.12 6.81 -0.19 6.78 0.03 6.75 0.11 7.17 0.06 7.31 -0.06 8.01
Shipley (Vocabulary) 0.10 4.33 -0.14 4.33 0.12 4.13 -0.0 4.76 0.03 4.77 -0.02 5.62
Personality Traits
Openness 0.00 6.87 -0.13 6.65 -0.05 6.74 0.02 7.02 0.01 7.01 -0.02 8.05
Conscientiousness 0.12 7.89 -0.14 7.07 0.13 7.86 0.12 7.29 0.12 7.21 -0.01 8.21
Extraversion 0.17 8.41 -0.14 8.69 0.13 8.43 0.12 8.69 0.16 8.69 0.12 9.3
Agreeableness 0.08 5.94 -0.15 5.78 0.10 5.73 0.03 6.09 0.0 6.12 -0.03 7.13
Neuroticism 0.12 12.94 -0.17 13.17 0.13 12.93 0.13 13.13 0.12 13.22 0.08 14.34
Affect and Wellbeing
Pos. Affect 0.11 7.90 -0.07 6.88 0.11 7.78 0.14 7.03 0.10 7.06 0.08 7.10
Neg. Affect 0.09 11.88 -0.17 10.89 -0.01 10.81 0.06 11.42 0.08 11.47 0.08 11.26
Anxiety (STAI) 0.11 9.45 -0.14 9.66 0.04 9.50 0.09 9.98 0.14 9.78 0.09 9.92
Sleep Quality (PSQI) 0.17 16.28 -0.14 15.52 0.13 15.96 0.15 16.63 0.14 16.71 0.06 16.94
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Table B.6: Mixed-effects Models: Predicting psychological constructs with both physical
activity and social media features together. Prediction algorithms used include Ridge, Elastic
Net (ElNet), Support Vector Regressor (SVR), XGBoost (XGB), Gradient Boosted Random
Forest (GBR), and Multilayer Perceptron Regressor (MLP). Reported accuracy numbers are
Symmetric Mean Absolute Percentage Error (SMAPE) and Pearson’s correlation coefficient
(r), which are pooled in k-fold cross-validation (k=5). The bold-faced number in each row
indicate the best performing model for that construct.

Construct Algorithm

Ridge ElNet SVR XGB GBR MLP
r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE r SMAPE

Cognitive Ability
Shipley (Abstraction) 0.15 11.96 -0.19 6.78 0.25 6.65 0.16 6.96 0.18 6.95 -0.02 22.2
Shipley (Vocabulary) 0.14 8.01 -0.11 4.33 0.25 4.10 0.26 4.36 0.28 4.33 0.12 29.37
Personality Traits
Openness 0.13 11.14 -0.13 6.65 0.26 6.40 0.16 6.65 0.17 6.63 0.16 15.13
Conscientiousness 0.09 10.93 -0.14 7.07 0.17 7.86 0.17 8.03 0.17 7.99 0.07 15.15
Extraversion 0.03 13.98 -0.14 8.69 0.17 8.37 0.17 8.35 0.17 8.57 0.09 17.52
Agreeableness 0.07 9.88 -0.15 5.78 0.17 5.91 0.16 5.92 0.11 5.94 0.14 14.37
Neuroticism 0.10 21.18 -0.17 13.17 0.11 12.93 0.07 13.45 0.08 13.49 0.13 19.59
Affect and Wellbeing
Pos. Affect 0.07 11.19 -0.0 6.87 0.13 6.77 0.13 6.95 0.13 6.85 0.07 29.51
Neg. Affect 0.13 17.82 -0.17 10.89 -0.05 10.83 0.13 11.18 0.11 11.23 0.12 22.95
Anxiety (STAI) 0.13 16.07 -0.08 9.65 0.02 9.50 -0.0 10.15 0.07 9.91 0.13 30.71
Sleep Quality (PSQI) 0.13 27.64 -0.14 15.52 0.20 14.9 0.19 15.15 0.19 15.28 0.21 23.22
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APPENDIX C

LIFE EVENTS DISCLOSURES ON SOCIAL MEDIA

C.1 Additional regression models

Disentangling Factors of Reporting Life Events on Different Modalities

Besides the convergence (Model1) and divergence models (Model2) as studied in Sec-

tion subsubsection 6.2.3, we also run a third kind of logistic regression models on the entire

data of DT, such that:

• Model3a uses all the described covariates as dependent variable and predicts if the

event is disclosed on social media as the dependent variable, i.e., 1 if self-disclosed

on social media, and 0 if not.

• Model3b uses all the described covariates as dependent variable and predicts if the

event is reported on survey as the dependent variable, i.e., 1 if reported on survey, and

0 if not.

Essentially, these models allow us to disentangle the effects of each of our covariates in

explaining the direction of reporting, treating each of the modalities independent of each

other. For instance, Model2 revealed that males show a negative correlation (Table 7) which

could either be because males tend to disclose lesser on social media, or because Males

report more on surveys compared to females. The two models Model3a and Model3b

would help us to disentangle similar directions of the factors in each of the models.

Table C.1 shows standardized coefficients and significance of the covariates in the

above models. Looking at the significant variables, we find that an interesting pattern that

Model3a and Model3b show coefficients with opposite signs. For example, age shows

positive association with social media disclosures and a negative association with survey
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Table C.1: Model3∗: Coefficients of linear regression of relevant covariates as independent
variables and disclosing on social media as dependent variable in Model3a (1 for disclosure
and 0 for no-disclosure), and self-reporting on survey as dependent variable in Model3b (1
for self-report and 0 for no-self-report), * p<0.05, ** p<0.01, *** p<0.001.

Model3a Model3b Model3a Model3b

Demographic/Trait Coeff. p Coeff. p Event Attribute Coeff. p Coeff. p

Age 0.02 * −0.04 *** Valence: Positive 0.39 *** −0.19
Gender: Male −0.89 * 0.43 *** Significance −1.26 *** 0.87 ***
Born in US: Yes −0.35 0.22 Recency −1.88 1.57 ***
Education: H. School −0.02 1.16 *** Anticipated 0.19 * −0.16
Education: College −0.04 1.19 * Intimacy −0.78 *** 0.36 ***
Education: Grad School 0.22 0.94 ** Scope −0.84 *** 0.44 **
Education: Doctoral 0.32 0.72 Status: Ongoing 4.71 *** −1.92 ***
Shipley: Abstraction −0.07 *** 0.04 * Type: Health −0.25 0.29
Shipley: Vocabulary −0.02 0.05 ** Type: Work −1.54 *** 0.97 ***
Personality: Openness 0.06 −0.34 ** Type: School −0.10 0.26
Personality: Conscientiousness −0.06 −0.07 * Type: Local −1.08 * −0.17
Personality: Extraversion 0.22 * −0.03 Type: Financial −2.88 *** 1.35 ***
Personality: Agreeableness 0.92 *** 0.08
Personality: Neuroticism 0.26 * −0.03 Baseline Attribute Coeff. p Coeff. p

Positive Affect −0.00 −0.03 ** SM: Num. Posts 1.28 *** -0.03
Negative Affect −0.00 0.00 SM: Avg. Post Length 8.62 * -1.44
Stai: Anxiety 0.02 −0.03 * SR: Num. Records -1.07 *** 1.46 ***
PSQI: Healthy Sleep Quality −0.10 *** 0.01 SR: Avg. Significance 0.50 *** -0.17 **
Model3a : AIC = 920.3, Deg. Freedom= 34, LLk. = −425.15, χ2= 2493.88, Pseudo R2 = 0.75, p < 0.001 ***

Model3b : AIC = 2160.4, Deg. Freedom= 34, LLk. = −1045.22, χ2= 1468.90, Pseudo R2 = 0.43, p < 0.001 ***

self-reports. Again, males are less likely to disclose events on social media, and, age has no

effect on self-reports. We also find that healthy sleep quality has a strong negative association

with social media disclosures, however no significant association with self-reports of life

events.

Among event attributes, we find that valence of event bears a strong positive association

with social media disclosures but no significant relationship with self-reports. In contrast,

greater the significance of an event, less likely it is to be disclosed on social media, and

more likely it is to be reported in self-reported survey. We construe similar explanation as in

Section subsection 6.2.3 holds here, significant events could be associated with emergency

circumstances when the individual has lower propensity to post about the event. Similar

associations are observed for recency, intimacy, and scope, with negative association with

social media disclosure and positive association with self-reports. With respect to type

of events, Work shows significant negative relationship with social media disclosure and

positive relationship with self-reports — indicating that work related events are less likely

289



to be posted on social media despite their occurrences.

Finally, we also find interesting directions for the baseline attributes, we find that social

media related baseline attributes positively associate with social media disclosure but show

no statistical significance in the relationship with survey based disclosure. For survey related

baseline attributes, we find that number of survey records negatively associate with number

of social media disclosures, and positively associate with survey event logging. Again,

baseline self-reported significance shows a positive association with social media disclosure,

indicating that individuals who tend to self-perceive greater significance of events are also

more likely to disclose the event on social media. Taken together, the relationships observed

in this analysis is not very different from what we observe in our results, providing more

insight about what does the factors associated with online disclosures of life events.
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C.2 Codebooks

Table C.2: Codebook describing definitions and characteristics of identifying life events on
social media

Category Definition

School

Back To School • Either the poster or an immediate family member started at a new school (after graduation) or training

program (general categories of preschool, K-12, college, etc).

• Immediate family members include people that the poster lives with such as partner or children

Changed School • The poster or immediate family member changed schools or training programs.

• Includes change from elementary to middle school and middle to high school, such as finished middle

school and will now be going to high school.

Finished School • Either the poster or their immediate family member graduated elementary/middle/high school/university

• Milestone related to graduation (senior prom, baccalaureate, etc).

• The poster or their immediate family member graduated/left an organization important to them that they

were part of for long time (e.g. a sport)

• Finished daycare/preschool and will now be going to K-12

• Completed training/got certified for something (e.g., scuba diving)

Issue at School • Either the poster or an immediate family member had problems at their school/training program

• Very poor grades

• In trouble with teacher/principal for something serious

• Another person at their school (or family member’s school) did something that impacted the poster (this

does not include school shooting— that goes under “Assaulted” category).

Failed School • The poster or their immediate family member failed school or a training program

• Failure could be either completely failing out of school/the program or a significant failure in a class

Did not Finish

School

• The poster or their immediate family member did not graduate

Personal

Engaged • Got engaged

• Talking about plans for marriage, but does not seem like their wedding has been planned yet (no date

set, wedding isn’t for a long time, etc)

Broken Engage-

ment

• They ended their engagement.

Married • Posted about wedding

Post about their upcoming wedding (have a set date, wedding preparations like buying wedding dress,

tasting cake, etc)

• Posting about their recent wedding

• Could also be an immediate family member’s wedding life event of gaining a new in-law, stepparent,

etc.

Started Affair • Started an extramarital affair.
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Negative Relation-

ship

• Having serious problems in their relationship (but not separating or getting a divorce)

Separated In Mar-

riage

• They are separating from their partner.

• Ended a long-term, significant relationship

• Their parents are separating

Divorce • They are getting divorced.

• Their parents are getting divorced.

Positive Relation-

ship

• Partner made a significant (romantic) gesture.

• Post about anniversary or other important, positive relationship milestone. (For anniversary, people may

use expressions like “another year with”)

• Couple participated in hobby, activity, etc together

• Partner being supportive of them during a difficult time.

Reunion After

Separation

• They get back with their partner after being separated or divorced.

Infidelity • Either they cheated on their partner or their partner cheated on them.

Trouble In-Laws • Posted about difficulties with their in-laws

Spouse Died • Posted about spouse’s death or funeral

Pregnant • Announced their or their partner’s pregnancy.

• They posted something significant related to their current pregnancy (e.g. first time baby kicked).

• Do not include things that inconclusive events (e.g. morning sickness, having weird cravings)

• Do not include posts reminiscing about past pregnancy/pregnancies

FirstChild • Announcing the birth of first child.

• Assume it is first child if no other children mentioned.

• Use for when infant has significant milestones important to parent within first year— crawling, walking.

• Can use up until the child turns one-year old (1st birthday can be included)

• Becomes a grandparent"

Younger Child

Birth

• They had another child.

• Use for when infant has significant milestones important to parent within first year— crawling, walking.

• Can use up until the child turns one-year old (1st birthday can be included)

FertilityIssue • They learned that they are not able to have children.

• Had surgery to prevent having children.

Child Died • Their child died (may mention “SIDS” - a common cause)

• Do NOT include abortions or miscarriages here— they have their own categories in the health-related

section.

• Can still categorize with this even if a lot of time has passed since it’s an event that continues to cause

the person great pain.

Adopted Child • Adopted child(ren)

• Fostering child(ren)

• Became a stepmother or stepfather

Person Move In • Someone moved into their household.
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Person Moved Out • Someone moves out of the poster’s home.

• If post is about child going off to college- chose this instead of “Back To School” (because this is more

directly relevant for the poster).

Person Stayed

Longer

• Someone stayed in their home after they were supposed to move out.

Argument In Fam-

ily

• Serious argument with a family member that is not partner or spouse.

More/Less Family

Meetups

• More:

• See family member(s) after a long time apart

• Meet a family member’s new baby (sister’s baby, cousin’s baby. . . )

• A family member gets married — the life event of gaining a new in-law, stepparent, etc.

• Less:

• Have not seen one or more family members in a long time"

Death in Family • Family member died (recently enough that grief is still fresh)

• Family member with dementia— feels like they’re already gone.

Positive Move • Happy about recent move to a new residence or neighborhood (if there are exclamation points and the

tone is positive, can assume Positive Move)

• About to move to a new residence or neighborhood

• Moved to a better residence/neighborhood than old one.

• Become a citizen or earn residency (e.g., green card in the U.S.)

Negative Move • Unhappy about their move to a new residence or neighborhood

• Having trouble with the moving process.

Neutral Move • Neutral view about moving (or post is just ambiguous about).

• Has “mixed emotions” or calls the move “bittersweet”

• Planning to move but have not yet — selling home, made an offer on a house, etc."

Failed Move • They were unable to move after attempting to.

• Complete failure- they are staying in current home, not renting or waiting it out."

Build Home • Build a new home (or more likely, have it built)

Remodeled Home • They remodeled at least one room in their home (or a significant feature, like adding a pool).

Lost Home in Dis-

aster

• Part of home was significantly damaged in a disaster.

• Lost entire home in disaster.

Assaulted • Physically assaulted, or involved in a similar traumatizing event.

• This includes events that create significant trauma (e.g., in a school during a shooting)

• Victim of sexual harassment

• Either the poster or an immediate family member.

Robbed • They were directly robbed, an immediate family member was robbed, or their home was

• They were a victim of identity theft, or credit card was stolen, etc.
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No Injury Accident • Involved in an accident but not injured (or barely injured— just a few bruises, etc)

• Witness to a big accident (e.g. a deadly car crash)

• Helps out someone else who was involved in a serious accident

• Very worried about a loved one/pet (e.g they are missing)

• Hurricane, wildfire, etc impacting their city

Lawsuit • They become involved in a lawsuit.

Accused • They are accused of a crime.

Lost License • They lost their driver’s license

• They lose some other form of license (eg. medical license)

Arrested • They were arrested

Went Jail • They went to jail/prison.

• An immediate family member went to jail/prison.

• Someone who harmed them went to jail/prison.

Court Case • They became involved in a court case.

• They were a witness for a court case.

• They had jury duty (do not include if they were only summoned- must have at least reported for duty).

Convicted • They were convicted of a crime.

• An immediate family member was convicted.

• A person that harmed them was convicted.

Acquitted • They were acquitted.

• An immediate family member was acquitted.

• A person that harmed them was acquitted.

Released Jail • They were released from jail/prison.

• An immediate family member was released from jail/prison.

• Someone who harmed them was released from jail/prison

In Jail Longer • Didn’t get out of jail/prison when expected (i.e. was up for parole).

• An immediate family member didn’t get out of jail/prison when expected.

• Someone who harmed them did not get released from jail/prison when expected.

Increased Social

Activity

• Increase in organizational/hobby-related activity.

• Took part in an important event related to this organization, hobby, etc

• Or significant increase in time spent with friend(s) (e.g. “girls weekend”)

• Important reunion (e.g. high school)

• Went to a special event

• A good friend has an important event — gets married, has a baby, graduates. . .

• Running a marathon, big sports event, etc.
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Vacation • Had a holiday away from home (not related to work)

• Generally more than a day.

Usually if beach is mentioned (unless something in post indicates otherwise)

• May still be labeled as “vacation” even if person calls it a “trip,” as long as it meets the criteria

• Posting about a popular tourist location— especially if wording indicates they are a tourist.

• Cruise

• Mentions upcoming vacation, but with some sort of planning

Vacation Plan Fail • Unexpected events ruining either part or all of vacation plans, e.g., flight cancellation, missed flight,

weather, family issue, etc.

• Do NOT include layovers unless they are an unexpected, long delay.

New Hobby • Picked up a new skill, hobby, or craft

• New recreational activity

• Healthier lifestyle (aka incorporated new healthy habits) has had a significant impact (e.g. new diet,

exercise regimen has led to weight loss, feeling better, etc)

• Got a tattoo They or their child got driver’s license

Dropped Hobby • They dropped a hobby that was significant to them (e.g. stopped running due to an injury)

• Got rid of an unhealthy habit

New Pet • Adopted a new pet

• Began fostering new pet

• Began training a service dog

• Instead of directly mentioning “a pet”, one may indicate by including emoji of the type of pet or call an

explicit nickname or attributes indicating a pet (e.g., “kitty”, “doggy”, “paws”).

Pet Died • Their pet died.

• They were forced to give away their pet for some reason.

• Their pet is very sick/frail and they think it is going to pass away soon.

New Friends • "Made new friend(s)

• Met a celebrity, figure, etc who’s important to them

• Share an impactful moment/event with a stranger

Broken Friendship • Broke up with a close friend In a huge fight with a close friend

Breakup • Broke up with significant othe

• Or planning (or strongly considering) to break up with significant other.

• Post is centered around the break up— not just describing someone as an ex when talking about

another event (see example of post that does not belong).

• Does not include divorce or friendship posts.

Friend Died • A close friend died

• If a death significant to person is mentioned and not sure of relationship, this is the default option.
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Trip • Time away from home that is not for pleasure— likely work related.

• Or a quick day trip away from hometown.

• Assume “Vacation” if cannot confirm “Trip”

• Camping/hiking/day trip.

• A sports trip they are participating in.

• Posting about the flight they’re on.

Work-Related

First Job • Started first job.

Applies to poster/immediate family

Back to Work • They returned to work after a long period of not working.

• They returned to work after being a stay-at-home parent for a long time.

• Not the first job

• Applies to poster/immediate family

• Assume this when the post doesn’t specify if it is a new job

Positive

Job

Switch

• Happy about leaving job for another.

Leaving job to become stay-at-home parent (considered a job).

Negative Job

Switch

• Upset or mad about leaving current job for another.

• Upset about a recent job switch

Neutral Job

Switch

• Neutral feelings about about leaving current job for another.

Boss Trouble • Had (or having) problems with a boss.

• Their boss did something bad in general and/or was fired.

Demoted • Demoted at work

No Promotion • Did not get a promotion at work

Bad Work Life • Significant problems at work (e.g. being harassed by a coworker)

• Post about why they really dislike their current job

• Don’t include minor things like a singular bad day.

• Consistently frustrated with job, coworkers.

Promoted • Got promoted at work.

Work Success • Significant success at work (not including promotion)

• Takes on a leadership role in an event (e.g. speak at a conference, hold an event)

• Received an award at a competition.

• They got a big bonus.

• They had a big commission (if works in sales).

• Takes on a leadership role in an event, or represents their company at an event (e.g. speak at a

conference)

• Hold an event (not necessarily for company— e.g. host a fundraiser for a charity)

• Reach a big milestone at work (e.g. 10 year anniversary of working at company)

Good Work-life • Positive experience(s) at work (significant to them or to the company as a whole).

• Conditions improved at work.
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Laid Off • Let go from their job (due to company reasons, like financial problems)

Fired • Fired from their job

Startup • Started a new business—

• Includes small, one-person businesses (e.g. selling own artwork)

Expansion • Their business is growing, selling more, etc.

• Hiring on more people at work.

Heavy Work • They took on a greatly increased workload.

• They have a lot of work/home/other organization work combined

Work Loss • Made a big mistake at work.

Caused their company to lose money

• If manager, boss, owner- their company, in general, suffered financial loss, went bankrupt. . . "

Light Work • Their workload decreased significantly.

Performance

Review

• Had a performance review at work— or anticipating one.

• Company, product, etc reviewed online, in a magazine.

New Project • Takes on a new project at work, home, etc.

• Something that they will finish (not a hobby)

Retired • Retired from job

Break

from Work

• Leaves job of own volition, and does not mention switch to new job.

• Not retiring- likely going back to work eventually

Got Bonus • Got a bonus at work (expected or unexpected).

• Pay raise.

• Referring to money only— does not include job promotions (separate category).

In Armed Service • They entered the armed services (Army, Navy, Air Force. . . )

Out Armed Ser-

vice

• They left the armed services (Army, Navy, Air Force. . . )

• Honorable/Dishonorable discharge?

Financial-Related

Mortgage • Took out a mortgage

• Use if they specifically say that they bought a house

Installment Pur-

chase

• Began or finished paying for a large purchase on an installment plan (e.g. car)

• Made a significant purchase (e.g. car, etc)

Mortgage Closed • Foreclosure of mortgage

• Foreclosure of loan

Rebought On In-

stallment

• Repossession of large purchase bought on installment plan (car, furniture. . . )

Salary Cut • Had a cut in salary/wages, but were not demoted.

Financial Loss • Suffer a significant personal (non-work related) financial loss.

• Categorize as “Financial Loss” if about a wedding, trip, etc if the post is focused on the big financial loss

caused by this event.

On Welfare • Went on welfare

Off Welfare • Went off welfare

Salary Increment • Got a substantial increase in wage or salary without a promotion (work related?)
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No Salary Incre-

ment

• Did not get an expected wage or salary increase (work related?)

Non-work Finan-

cial Gain

• Had a significant non-work related financial gain.

• Finished paying off a large debt (e.g. student debt, credit card. . . )

• Renting out their home, guest house, a room in their home, etc

Health-Related

Abortion • Poster or their partner had an abortion (or is planning to)

Miscarriage / Still-

birth

• Had a miscarriage

• Had a stillbirth

• Does not matter how long ago— still a significant enough event to keep affecting and remembering

about it in the present.

Menopause • They began menopause.

• Unlikely to explicitly state this, may be a vague post (talking about being unable to have kids anymore,

hot flashes, etc).

Health Gain • Physical health improvement (from illness, injury, etc.)

• Made significant, lasting healthy changes, eating better, exercising, etc.

• Mental health improvement (benefited from therapy, new meds working well, etc)

• If immediate family member (or person they are very close to) has a significant gain that affects poster,

then include (e.g. finally leaving hospital after watching over bedside).

Health Loss • Decline in physical health (diagnosed with disease, etc— NOT including a common cold or virus)

• Big, overall health problem.

• Or a decline in mental health (depression, anxiety, etc)

• If immediate family member (or person they are very close to) has a very serious problem that also

affects the poster (e.g. cancer) include them."

Injury • Significant physical injury (not just a bruise or cut)

• Pain specific to a certain area (or areas) of the body.

• Problems with legs, knees, back, etc.

• Painful symptoms

• Pain related to having surgery

• If immediate family member (or person they are very close to) has a very serious injury that affects

poster, then include them.

No Treatment • Unable to get treatment for an illness or injury because the poster 1) does not have insurance, 2) finds

the medication is too expensive, 3) does not have the time to see a doctor, etc.

Loccal

Bad Weather • Post is complaining about extreme temperatures

• Worried about bad weather (rainstorm tornado, snow, wildfire, etc) in their area.

• Post focused on how they were negatively affected by a bad weather event (e.g. couldn’t drive because

of snow).
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Sports Event • Participating in a sports event (marathon, soccer, basketball)

• Training for a sports event (e.g. marathon)

• Coaching a sports team.

• Attending a sports game.

• Party/event centered around a sporting event (e.g. Super Bowl Party)

• Does not include going to the gym (categorized as hobby)

• Not a sporting event if there’s no physical activity involved (e.g. trivia)
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Table C.3: Paraphrased example continuous life events identified in our data.

Example posts
Series of posts together

Survey: has anybody had the last six weeks of their pregnancy feel like a constant hunger fest?
Hospital swag? #4weeksout
To all my nurses....
The baby made me eat it.....
Future song writer? Might need some lesson... #likebabylikemomma
Sometimes the thing I get the most excited about is sweatpants. All day long... #preggolife #nothingnfitsright
Glucose testing day! 11 weeks until brother!

Surrounding posts providing context
Hilo, HI on the big island. Amazing landscape!!
Miguel in Hawaii
Room with a view, the views were magnificent!
Zip lining, so fun!!
Talk about fun!! Something I thought I would never do, now I may have to get certified!!

Single post describing a continuous life event
John came home from the hospital last night. Thank you so much for your prayers, love and support. He has 6 weeks of
IV antibiotics but at least he gets to do that at home...

Table C.4: A codebook to label intimacy of life events on a Three-point Likert scale.
Degree of Intimacy Description

Low Events which are typically discloseable to a public audience, smaller events as a part of normal lives,
posts which are common to be post about on social media, e.g., Work and academic success, social
activities, family meetups, celebratory post about family, friends, significant other, event that is not too
specific, and several others may be undergoing at the same time (e.g., back to school, change of quarter
related events), promoting business

Medium Big life event that is typically shared on social media. (e.g. new baby, new job). Includes negative events
that are common to post about (death of family member, injury). Large purchases such as a house, ca.
Important part of personal life, but not too personal to share (would be fine telling someone they just met
about)

High Traumatic or events associated with some form of stigma. Sharing negative parts of life. Disclosing events
about which someone might feel embarrassed about. Posts that may not make one look “perfect” if dis-
closed publicly. Finances— considered unusual (sometimes rude) to talk about money (at least in Amer-
ica)

Table C.5: A codebook to label scope (degree of directness on the individual) of life events
on a Three-point Likert scale.

Degree of Scope Description

Low • They are removed from the event, e.g., describing something in surroundings (e.g. weather event, how
nice their workplace is).
• Promotional— want to reach as many people as possible.
• Big event, not intimate/will interact with strangers, e.g., sports event.
• Unlikely to explicitly state this, may be a vague post (talking about being unable to have kids anymore,
hot flashes, etc).

Medium • Both the poster and family, friends, and/or significant other are involved in/were impacted by the
event.
• Event is happening to someone close to them, but the poster is not part of that event, e.g., School-
related posts typically parents talking about children.
• Events such as buying a house, moving, etc which also involve their family.
• Post about pets often mention family (or consider pet as family)

High • Event is unique to the poster—– it only happened to them
• Or, significantly impacted them more than others,
• Examples include promotion, met with an accident themselves, diagnosis about some condition of
their own.
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Table C.6: A codebook to label temporal status of life events on binary values of ongoing
and ended.

Status Description

Ongoing • Events that are still going on, or the individual talks about something that is happening in the present.
• Part of an continuous or long-term process (e.g. pregnancy-related, planning upcoming wedding, health
problems)
• May use past tense— but still ongoing if the overall event has not ended.
• If they’re using past tense, but posting about an event that just happened.

Ended • Events that recently ended, or ended in the past and the individual is mentioning about the occurrence.
• The individual reflects on an event that happened a while ago, but still affects them (e.g. death of a
parent).
• The part of a continuous event which just ended (e.g. got back from vacation recently).
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