INFERRING MOOD INSTABILITY ON SOCIAL MEDIA BY LEVERAGING ECOLOGICAL MOMENTARY ASSESSMENTS

Koustuv Saha, Larry Chan, Kaya de Barbaro, Gregory D. Abowd, Munmun De Choudhury

Background

Quantifying attributes of mental well-being

Survey Instruments
- Self-Report Questionnaires

Active Sensing
- Ecological Momentary Assessments (EMAs)

Passive Sensing
- Smartphones and Wearables
- Social Media

SOCIAL MEDIA AS PASSIVE SENSOR!

Challenge

Ground-truth Data
Mood Instability
Goals & Contributions

Broad tasks

- Combination of Active and Passive Sensing
- A machine learning framework identifying mood instability for a larger population
- Psycholinguistic cues and Mood Instability Lexicon
Objective: Inferring Mood Instability

Participants (Dataset 1)

- Actively Sensed
 - EMAs
 - Social Media

- Passively Sensed
 - Social Media

Public (Dataset 2)

- Large-scale
- Unlabeled

• Small-scale
• Actively sensed data as Ground-truth
Study and Data

CampusLife, Georgia Tech
Recruitment

- 51 participants
- Mean age: 22 Years
- Incentives: $40-$120
- 5 weeks (Spring 2016)

Data

- Survey Questionnaire (Entry and Exit)
- Active Sensing: EMAs (Daily)
- Smartphone sensors (Barometer, Call, Accelerometer, App usage..)
- Social Media (Facebook, Twitter)
Privacy & Ethics

- IRB approval
- Data sharing consent
- Secure servers
- De-identification
EMA Data

Photographic Affect Meter (PAM)
(Pollak et al., 2011)

1,606 EMA Responses
(Mean responses/participant: 32)
Social Media Data

CampusLife Population

- 23 Participants
 - 13k+ status updates

- 10 Participants
 - 1.5k tweets

One-time collection
Social Media Data-II

Unlabeled Twitter data with self-disclosure

(Coppersmith et al., 2014)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bipolar</td>
<td>- Self-Disclosure of Bipolar Disorder</td>
</tr>
<tr>
<td></td>
<td>- Eg: I have been diagnosed with Bipolar Disorder</td>
</tr>
<tr>
<td>Borderline</td>
<td>- Self-Disclosure of Borderline Personality Disorder</td>
</tr>
<tr>
<td></td>
<td>- Eg: I suffer from bpd</td>
</tr>
<tr>
<td>Control</td>
<td>- Random Twitter Stream</td>
</tr>
<tr>
<td></td>
<td>- Excludes Bipolar and Borderline</td>
</tr>
</tbody>
</table>

37m+ tweets, 19k+ unique users

Linguistic Equivalence

Cross-platform & Cross-population

(Baldwin et al., 2013)

<table>
<thead>
<tr>
<th>Pair-wise comparison of word-vectors (cosine similarities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-platform Linguistic Equivalence (Facebook and Twitter)</td>
</tr>
<tr>
<td>Cross-population Linguistic Equivalence (College and General population)</td>
</tr>
</tbody>
</table>

Data: Recap

- Actively Sensed
 - EMA Data
 - Facebook Data
- Passively Sensed
 - Twitter Data

CampusLife (Dataset 1)
- Small-scale
- Actively sensed data as Ground-truth

Public (Dataset 2)
- Large-scale
- Unlabeled
Methods and Results
Methods: Overview

- Actively Sensed
 - EMA Data
 - Mood Instability
 - Psycholinguistic Features
 - Seed Classifier

- Passively Sensed
 - Facebook Data
 - Psycholinguistic Features
 - Final Classifier

- Twitter Data
 - Psycholinguistic Features
 - Final Classifier

Campus (Dataset 1) → Public (Dataset 2) → Lexicon
Quantifying Mood Instability

Adjusted Successive Differences (ASDs)

(Jahng et al., 2008)

Non-uniform time differences in EMA responses

\[ASD_{i+1} = \frac{x_{i+1} - x_i}{(t_{i+1} - t_i)/\text{Mdn}(t_{i+1} - t_i)} \]

![Graph showing ASD values over time with labels for Valence and Arousal](image)
Labeling Mood Instability

- ASD: Adjusted Successive Differences
- MAD: Mean Absolute Deviation
- MI: Mood Instability
Machine Learning Classifier

Seed Classifier

Linguistic Inquiry and Word Count (Pennebaker et al., 2003)

- Psycholinguistic Lexicon: Linguistic Inquiry and Word Count (LIWC)
- Supervised machine learning classifier
 - 23 CampusLife participants
 - k-fold cross-validation (k=5) for parameter tuning
 - Naïve Bayes, Logistic Regression, Random Forest, Support Vector Machine

Seed Classifier: Accuracy Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>mean</th>
<th>stddev.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>0.58</td>
<td>0.54</td>
<td>0.83</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>0.51</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.48</td>
<td>0.64</td>
<td>0.83</td>
</tr>
<tr>
<td>SVM (Knl.=Poly.)</td>
<td>0.56</td>
<td>0.24</td>
<td>0.80</td>
</tr>
<tr>
<td>SVM (Knl.=RBF)</td>
<td>0.51</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>SVM (Knl.=Linear)</td>
<td>0.68</td>
<td>0.29</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Challenge

Unstable Classification?
Semi-Supervised Classifier

Self-Training

(Dara et al., 2002)

- K-Means clustering ($K=2$)
- Classification of centroids using seed classifier

Semi-supervised Classifier: Stability

Data	k-fold CV accuracies of SS Classifier (%High MI)							stdev.			
-----------	--	---	---	---	---	---	---	---	 0.39	 0.68	 0.32
Folds	1	2	3	4	5	mean	 Bipolar	 Borderline	 Control		
Bipolar	62.87	63.64	62.66	63.18	63.38	63.15	 0.39	 0.68	 0.32		
Borderline	61.06	61.81	62.44	62.84	62.31	62.09	 0.39	 0.68	 0.32		
Control	36.70	36.54	36.56	36.47	37.26	36.71	 0.39	 0.68	 0.32		
Results

Machine Learning Classification

- High Accuracy

- Higher Occurrence of High MI in *Bipolar* and *Borderline* datasets as compared to *Control*
Analyzing the Language

Psycholinguistic Features

Mood Instability Lexicon

<table>
<thead>
<tr>
<th>Psycholinguistic Group</th>
<th>H. MI vs. L. MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affective Attributes</td>
<td>83%</td>
</tr>
<tr>
<td>Cognitive Attributes</td>
<td>521%</td>
</tr>
<tr>
<td>Interpersonal Focus</td>
<td>124%</td>
</tr>
<tr>
<td>Lexical Density and Awareness</td>
<td>195%</td>
</tr>
<tr>
<td>Social/Personal Concerns</td>
<td>90%</td>
</tr>
</tbody>
</table>

High MI

Low MI
Discussion
Implications

- Social media as a passive sensor
- Ability to detect Mood Instability
- Tackle the challenges of lack of labeled data
- Application in other health sensing problems
- Integrate multiple sensors
Limitations & Future Work

- Clinical Relevance
- Causal Claims
- Self-Reported and Social Media Data
- Multimodal Data
Acknowledgements

- CampusLife Consortium
- StudentLife Project
- Human-Facing Privacy Thrust of the IISP Institute at Georgia Tech

Thank You

koustuv.saha@gatech.edu

koustuv.com
Seed Classifier: Accuracy Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>mean</th>
<th>stdev.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>0.58</td>
<td>0.54</td>
<td>0.83</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>0.51</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.48</td>
<td>0.64</td>
<td>0.83</td>
</tr>
<tr>
<td>SVM (KnI.=Poly.)</td>
<td>0.56</td>
<td>0.24</td>
<td>0.80</td>
</tr>
<tr>
<td>SVM (KnI.=RBF)</td>
<td>0.51</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>SVM (KnI.=Linear)</td>
<td>0.68</td>
<td>0.29</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Data</th>
<th>k-fold CV accuracies of Seed Classifier (%High MI)</th>
<th>stddev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar</td>
<td>66.81 69.86 64.64 43.76 62.82 51.38</td>
<td>10.30</td>
</tr>
<tr>
<td>Borderline</td>
<td>61.37 63.81 54.41 34.04 56.13 45.06</td>
<td>11.76</td>
</tr>
<tr>
<td>Control</td>
<td>42.04 46.05 37.35 24.79 37.94 31.40</td>
<td>7.99</td>
</tr>
</tbody>
</table>